Application of Digital Molding in Maxillofacial Prosthetics: A Narrative Review
Digital Molding in Maxillofacial Prosthetics
DOI:
https://doi.org/10.31661/gmj.v13iSP1.3656Keywords:
3D Imaging Tools; CT scans; Maxillofacial ProsthesisAbstract
Background: The use of digital tools and 3D molding has become very common in dentistry today. However, there are few studies on the possibility of using 3D imaging tools for molding maxillofacial defects. In this review study, we examine articles that have used digital molding tools instead of conventional methods for molding maxillofacial defects. Materials and Methods: In this study, all articles related to keywords of "3D imaging tools", "CT scans", "Maxillofacial Prosthesis" were collected and reviewed by searching PubMed and ISI Web of Science until 2024. Then, the materials were classified into the following topics: the use of intraoral scanners in molding for maxillofacial prostheses, the use of facial scanners in molding for maxillofacial prostheses, the use of CT scans in molding for maxillofacial prostheses, and the use of new digital methods in molding for ocular, nasal, ear prostheses, maxillary and mandibular obturators, soft palate defects, and nasoalveolar molding prostheses, and were examined in detail. Results: This study showed that depending on the type of defect, specific types of digital molding tools can be used to the greatest advantage. Intraoral scanners can be used in the construction of nasoalveolar moldings, obturators, cleft palate, and ear prostheses. Facial scanners have the highest accuracy for molding defects in the middle third of the face. Facial scanners are helpful in midface defects, and in the construction of ocular and nasal prostheses. The main use of CBCT molding is in molding the patient's palate for the design and construction of obturators. For mandibular molding, the use of intraoral scanners is much better than other methods. Moreover, even in cases where the patient has mild to moderate trismus after mandibulectomy, the use of intraoral scanners has acceptable accuracy.
References
de Caxias FP, dos Santos DM, Bannwart LC, de Moraes Melo Neto CL, Goiato MC. Classification, History, and Future Prospects of Maxillofacial Prosthesis. International Journal of Dentistry. 2019;2019(1):8657619.
https://doi.org/10.1155/2019/8657619
PMid:31396279 PMCid:PMC6668529
Dos Santos DM, de Caxias FP, Bitencourt SB, Turcio KH, Pesqueira AA, Goiato MC. Oral rehabilitation of patients after maxillectomy A systematic review. Br J Oral Maxillofac Surg. 2018;56(4):256-66.
https://doi.org/10.1016/j.bjoms.2018.03.001
PMid:29655661
Cevik P, Kocacikli M. Three-dimensional printing technologies in the fabrication of maxillofacial prosthesis: A case report. The International Journal of Artificial Organs. 2020;43(5):343-7.
https://doi.org/10.1177/0391398819887401
PMid:31739725
Fonder A. Maxillofacial prosthetics. The Journal of Prosthetic Dentistry. 1969;21(3):310-4.
https://doi.org/10.1016/0022-3913(69)90293-5
PMid:5251784
Phasuk K, Haug SP. Maxillofacial prosthetics. Oral and Maxillofacial Surgery Clinics. 2018;30(4):487-97.
https://doi.org/10.1016/j.coms.2018.06.009
PMid:30266191
Punj A, Bompolaki D, Garaicoa J. Dental Impression Materials and Techniques. Dent Clin North Am. 2017;61(4):779-96.
https://doi.org/10.1016/j.cden.2017.06.004
PMid:28886768
Tsuji M, Noguchi N, Ihara K, Yamashita Y, Shikimori M, Goto M. Fabrication of a maxillofacial prosthesis using a computer‐aided design and manufacturing system. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry. 2004;13(3):179-83.
https://doi.org/10.1111/j.1532-849X.2004.04029.x
PMid:15345018
Brucoli M, Boffano P, Pezzana A, Corio C, Benech A. The use of optical scanner for the fabrication of maxillary obturator prostheses. Oral and Maxillofacial Surgery. 2020;24:157-61.
https://doi.org/10.1007/s10006-020-00836-9
PMid:32147758
Shahid O, Alhayek A, Ahmed ZU, Aslam N, Aldawood T, Morgano SM, et al. Maxillary interim obturator prosthesis fabrication for a patient with limited mouth opening with a digital approach: A clinical report. Journal of Prosthodontics. 2024;33(8):725-729.
https://doi.org/10.1111/jopr.13854
PMid:38566330
Silva PL, Jardilino FD, Santana-Miranda CL, Sampaio AA, dS Pinto R, Rúbio JC, et al. Facial Scanning and Additive Manufacturing Used in Production Nasal Prosthesis. Journal of Craniofacial Surgery. 2022;33(7):e762-e4.
https://doi.org/10.1097/SCS.0000000000008712
PMid:36100965
Nasseh I, Al-Rawi W. Cone beam computed tomography. Dental Clinics. 2018;62(3):361-91.
https://doi.org/10.1016/j.cden.2018.03.002
PMid:29903556
Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dental Clinics of North America. 2008;52(4):707-30.
https://doi.org/10.1016/j.cden.2008.05.005
PMid:18805225
John GP, Joy TE, Mathew J, Kumar VR. Applications of cone beam computed tomography for a prosthodontist. The Journal of Indian Prosthodontic Society. 2016;16(1):3-7.
https://doi.org/10.4103/0972-4052.161574
PMid:27134420 PMCid:PMC4832800
Calderon C, Golzar A, Marcott S, Gifford K, Napel S, Fleischmann D, et al. 3D Printing for the Development of Palatal Defect Prosthetics. Federal Practitioner. 2024;41(Suppl 2):S3.
https://doi.org/10.12788/fp.0464
PMid:38813248 PMCid:PMC11132111
Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101-29.
Moss J, Coombes A, Linney A, Campos J. Methods of three dimensional analysis of patients with asymmetry of the face. Proceedings of the Finnish Dental Society Suomen Hammaslaakariseuran Toimituksia. 1991;87(1):139-49.
Meyer-Marcotty P, Stellzig-Eisenhauer A, Bareis U, Hartmann J, Kochel J. Three-dimensional perception of facial asymmetry. The European Journal of Orthodontics. 2011;33(6):647-53.
https://doi.org/10.1093/ejo/cjq146
PMid:21355063
Jablonski RY, Malhotra T, Coward TJ, Shaw D, Bojke C, Pavitt SH, et al. Digital database for nasal prosthesis design with a 3D morphable face model approach. J Prosthet Dent. 2024;131(6):1271-5.
https://doi.org/10.1016/j.prosdent.2023.02.019
PMid:37019749
Zhao YJ, Xiong YX, Wang Y. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy. PLoS One. 2017;12(1):e0169402.
https://doi.org/10.1371/journal.pone.0169402
PMid:28056044 PMCid:PMC5215889
Sun MH, Yen CH, Tsai YJ, Liao YL, Wu SY. Fabrication of a facial prosthesis for a 13-year-old child by using a point-and-shoot three-dimensional scanner and CAD/CAM technology. Taiwan J Ophthalmol. 2022;12(2):219-22.
https://doi.org/10.4103/tjo.tjo_49_21
PMid:35813808 PMCid:PMC9262021
Park JH, Yeo IL. Digitally designed and milled implant-retained maxillofacial prosthesis for velopharyngeal closure in a patient with a nonsurgically treated cleft palate: A clinical report. J Prosthet Dent. 2024; :1016.
https://doi.org/10.1016/j.prosdent.2024.06.007
Richert R, Goujat A, Venet L, Viguie G, Viennot S, Robinson P, et al. Intraoral Scanner Technologies: A Review to Make a Successful Impression. Journal of Healthcare Engineering. 2017;2017:1-9.
https://doi.org/10.1155/2017/8427595
PMid:29065652 PMCid:PMC5605789
Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC oral health. 2017;17:1-11.
https://doi.org/10.1186/s12903-017-0442-x
PMid:29233132 PMCid:PMC5727697
Unkovskiy A, Spintzyk S, Beuer F, Huettig F, Röhler A, Kraemer-Fernandez P. Accuracy of capturing nasal, orbital, and auricular defects with extra-and intraoral optical scanners and smartphone: An in vitro study. Journal of Dentistry. 2022;117:103916.
https://doi.org/10.1016/j.jdent.2021.103916
PMid:34875273
Jacob HB, Wyatt GD, Buschang PH. Reliability and validity of intraoral and extraoral scanners. Progress in orthodontics. 2015;16:1-6.
https://doi.org/10.1186/s40510-015-0108-7
PMid:26506832 PMCid:PMC4623872
Patel J, Winters J, Walters M. Intraoral digital impression technique for a neonate with bilateral cleft lip and palate. The Cleft Palate-Craniofacial Journal. 2019;56(8):1120-3.
https://doi.org/10.1177/1055665619835082
PMid:30857398
ElNaghy R, Amin SA, Hasanin M. Evaluating the accuracy of intraoral direct digital impressions in 2 infants with unilateral cleft lip and palate compared with digitized conventional impression. American Journal of Orthodontics and Dentofacial Orthopedics. 2022;162(3):403-9.
https://doi.org/10.1016/j.ajodo.2021.09.015
PMid:36049869
Okazaki T, Kawanabe H, Fukui K. Comparison of conventional impression making and intraoral scanning for the study of unilateral cleft lip and palate. Congenital Anomalies. 2023;63(1):16-22.
https://doi.org/10.1111/cga.12499
PMid:36371642 PMCid:PMC10098894
Gong X, Dang R, Xu T, Yu Q, Zheng J. Full digital workflow of nasoalveolar molding treatment in infants with cleft lip and palate. Journal of Craniofacial Surgery. 2020;31(2):367-71.
https://doi.org/10.1097/SCS.0000000000006258
PMid:32049908
Villarreal-Martínez K, Fierro-Serna V, Rosales-Berber MA, Alejandri-Gamboa V, Torre-Delgadillo G, Ruiz-Rodríguez S, et al. Digital nasoalveolar molding through presurgical orthopedics in newborns/infants with cleft lip and palate: A comprehensive review and case study. Special Care in Dentistry. 2024;44(4):1074-1082.
https://doi.org/10.1111/scd.12989
PMid:38468150
Ali IE, Enomoto K, Sumita Y, Wakabayashi N. Combined digital-conventional workflow to fabricate a definitive obturator from an interim obturator for a patient with an anterior maxillectomy defect. The Journal of Prosthetic Dentistry. 2023; : .
https://doi.org/10.1016/j.prosdent.2023.04.028
Ye H, Wang Z, Sun Y, Zhou Y. Fully digital workflow for the design and manufacture of prostheses for maxillectomy defects. J Prosthet Dent. 2021;126(2):257-61.
https://doi.org/10.1016/j.prosdent.2020.05.026
PMid:32919758
Gao Y, Hattori M, Sumita YI, Wakabayashi N. Creating and analyzing digital scans of a mandibulectomy cast with simulated trismus. The Journal of Prosthetic Dentistry. 2023; : .
https://doi.org/10.1016/j.prosdent.2023.09.036
Gadallah MA, Khamis MM, Abdelhamid AM, Ezzelarab S. Evaluation of the use of different intraoral scanners for auricular prosthetic reconstruction. The Journal of Prosthetic Dentistry. 2023; : .
https://doi.org/10.1016/j.prosdent.2023.09.028
PMid:39492256
Zhao Y-j, Xiong Y-x, Wang Y. Three-dimensional accuracy of facial scan for facial deformities in clinics: a new evaluation method for facial scanner accuracy. PloS one. 2017;12(1):e0169402.
https://doi.org/10.1371/journal.pone.0169402
PMid:28056044 PMCid:PMC5215889
Heike CL, Upson K, Stuhaug E, Weinberg SM. 3D digital stereophotogrammetry: a practical guide to facial image acquisition. Head & face medicine. 2010;6:1-11.
https://doi.org/10.1186/1746-160X-6-18
PMid:20667081 PMCid:PMC2920242
Piedra-Cascón W, Meyer MJ, Methani MM, Revilla-León M. Accuracy (trueness and precision) of a dual-structured light facial scanner and interexaminer reliability. The Journal of prosthetic dentistry. 2020;124(5):567-74.
https://doi.org/10.1016/j.prosdent.2019.10.010
PMid:31918895
Lee JD, Nguyen O, Lin Y-C, Luu D, Kim S, Amini A, et al. Facial Scanners in Dentistry: An Overview. Prosthesis. 2022;4(4):664-78.
https://doi.org/10.3390/prosthesis4040053
D'Ettorre G, Farronato M, Candida E, Quinzi V, Grippaudo C. A comparison between stereophotogrammetry and smartphone structured light technology for three-dimensional face scanning. The Angle Orthodontist. 2022;92(3):358-63.
https://doi.org/10.2319/040921-290.1
PMid:35015071 PMCid:PMC9020391
Knoops PG, Beaumont CA, Borghi A, Rodriguez-Florez N, Breakey RW, Rodgers W, et al. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2017;70(4):441-9.
https://doi.org/10.1016/j.bjps.2016.12.015
PMid:28161205
Park J-H, Yeo I-SL. Digitally designed and milled implant-retained maxillofacial prosthesis for velopharyngeal closure in a patient with a nonsurgically treated cleft palate: A clinical report. The Journal of Prosthetic Dentistry. 2024; : .
https://doi.org/10.1016/j.prosdent.2024.06.007
Sun M-H, Yen C-H, Tsai Y-J, Liao Y-L, Wu S-Y. Fabrication of a facial prosthesis for a 13-year-old child by using a point-and-shoot three-dimensional scanner and CAD/CAM technology. Taiwan Journal of Ophthalmology. 2022;12(2):219-22.
https://doi.org/10.4103/tjo.tjo_49_21
PMid:35813808 PMCid:PMC9262021
Jablonski RY, Malhotra T, Coward TJ, Shaw D, Bojke C, Pavitt SH, et al. Digital database for nasal prosthesis design with a 3D morphable face model approach. The Journal of Prosthetic Dentistry. 2024;131(6):1271-5.
https://doi.org/10.1016/j.prosdent.2023.02.019
PMid:37019749
Tasopoulos T, Chatziemmanouil D, Karaiskou G, Kouveliotis G, Wang J, Zoidis P. Fabrication of a 3D-printed interim obturator prosthesis: A contemporary approach. The Journal of Prosthetic Dentistry. 2019;121(6):960-3.
https://doi.org/10.1016/j.prosdent.2018.10.004
PMid:30782460
Soliman I, Sharaf DA, Shawky A, Atteya AM. Diagnostic evaluation and guardian assessment of using digital impression in neonates versus the conventional techniques. Alexandria Dental Journal. 2024;49(1):129-33.
Olmos M, Matta R, Buchbender M, Jaeckel F, Nobis C-P, Weber M, et al. 3D assessment of the nasolabial region in cleft models comparing an intraoral and a facial scanner to a validated baseline. Scientific Reports. 2023;13(1):12216.
https://doi.org/10.1038/s41598-023-39352-7
PMid:37500683 PMCid:PMC10374634
Chaudhari PK, Dhingra K. Full Digital Workflow of Nasoalveolar Molding Treatment in Infants With Cleft Lip and Palate: Comment. J Craniofac Surg. 2020;31(7):2067-8.
https://doi.org/10.1097/SCS.0000000000006893
PMid:32804817
Jablonski RY, Coward TJ, Bartlett P, Keeling AJ, Bojke C, Pavitt SH, et al. IMproving facial PRosthesis construction with contactlESs Scanning and Digital workflow (IMPRESSeD): Study protocol for a feasibility crossover randomised controlled trial of digital versus conventional manufacture of facial prostheses in patients with orbital or nasal facial defects. Pilot and Feasibility Studies. 2023;9(1):110.
https://doi.org/10.1186/s40814-023-01351-w
PMid:37400919 PMCid:PMC10316589
Palousek D, Rosicky J, Koutny D. Use of digital technologies for nasal prosthesis manufacturing. Prosthetics and orthotics international. 2014;38(2):171-5.
https://doi.org/10.1177/0309364613489333
PMid:23798039
Ciocca L, Scotti R. Oculo-facial rehabilitation after facial cancer removal: Updated CAD/CAM procedures A pilot study. Prosthetics and Orthotics International. 2013;38(6):505-9.
https://doi.org/10.1177/0309364613512368
PMid:24327667
Ciocca L, Scotti R. CAD-CAM generated ear cast by means of a laser scanner and rapid prototyping machine. J Prosthet Dent. 2004;92(6):591-5.
https://doi.org/10.1016/j.prosdent.2004.08.021
PMid:15583570
Ciocca L, Bacci G, Mingucci R, Scotti R. CAD-CAM construction of a provisional nasal prosthesis after ablative tumour surgery of the nose: a pilot case report. Eur J Cancer Care (Engl). 2009;18(1):97-101.
https://doi.org/10.1111/j.1365-2354.2008.01013.x
PMid:19473226

Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.