Advances in Regenerative Medicine for the Treatment of Osteonecrosis of the Jaw

Advances in Treatment of Osteonecrosis of the Jaw

Authors

  • Emad Taghizadeh Department of Oral and Maxilofacial Surgery, Faculty of Dentistry, Shahed University,Tehran, Iran
  • Seyed Mohammad Mahdi Mirmohammadi Department of Oral and Maxillofacial Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Arezoo Khosravi Department of Oral and Maxilofacial Surgery, Faculty of Dentistry, Shahed University,Tehran, Iran
  • Gholamreza Mojarab Department of Oral and Maxilofacial Surgery, Faculty of Dentistry, Shahed University,Tehran, Iran
  • Hossein Shahoon Department of Oral and Maxilofacial Surgery, Faculty of Dentistry, Shahed University,Tehran, Iran

Keywords:

Osteonecrosis of The Jaw; Regenerative Medicine; Biomaterial; 3D Bioprinting; Mesenchymal Stem Cells; Platelet-Rich Plasma

Abstract

Osteonecrosis of the jaw (ONJ) is a debilitating condition characterized by progressive bone tissue necrosis, commonly linked to bisphosphonates, radiation therapy, or trauma. Traditional treatments, such as surgical debridement and conservative management, often fail to fully restore bone function, driving the need for alternative therapeutic strategies. Regenerative medicine, particularly cellular therapies and biomaterials, has emerged as a promising field in ONJ treatment. This review explores recent advancements in regenerative approaches for ONJ, with a focus on Mesenchymal stem cells (MSCs) and bioengineered scaffolds. MSCs, with their dual ability to differentiate into osteoblasts and modulate immune responses, play a crucial role in bone regeneration by both forming new bone tissue and reducing inflammation. Bioengineered scaffolds, such as hydrogels, bioactive ceramics, and nanomaterials, provide essential structural support and create a conducive environment for cellular growth and tissue repair. The combination of MSCs with these biomaterials has demonstrated a synergistic effect, significantly enhancing bone healing and regeneration. Additionally, emerging techniques such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and bone morphogenetic proteins (BMPs) offer new avenues for improving clinical outcomes in ONJ patients. However, several challenges remain, including regulatory barriers, the need for standardized cell isolation and delivery protocols, and scalability issues for clinical application. This review further examines emerging technologies, such as 3D bioprinting and personalized medicine, which offer the potential to tailor regenerative treatments to individual patients, thereby improving both the efficacy and longevity of therapies. In conclusion, while significant progress has been made in the application of regenerative medicine for ONJ, continued research is essential to address current limitations, optimize treatment protocols, and ensure broader clinical adoption. Advances in cellular therapies and biomaterials hold transformative potential for improving therapeutic outcomes in patients with ONJ.

References

Lončar Brzak B, Horvat Aleksijević L, Vindiš E, Kordić I, Granić M, Vidović Juras D, et al. Osteonecrosis of the Jaw. Dent J. 2023 Jan;11(1):23.

https://doi.org/10.3390/dj11010023

PMid:36661560 PMCid:PMC9858620

Chang J, Hakam AE, McCauley LK. Current Understanding of the Pathophysiology of Osteonecrosis of the Jaw. Curr Osteoporos Rep. 2018 Oct;16(5):584-95.

https://doi.org/10.1007/s11914-018-0474-4

PMid:30155844

AlDhalaan NA, BaQais A, Al-Omar A. Medication-related Osteonecrosis of the Jaw: A Review. Cureus [Internet]. 2020 Feb 10 [cited 2024 Oct 1]; Available from: https://www.cureus.com/articles/27094-medication-related-osteonecrosis-of-the-jaw-a-review

https://doi.org/10.7759/cureus.6944

PMid:32190495 PMCid:PMC7067354

Zhang C, Shen G, Li H, Xin Y, Shi M, Zheng Y, et al. Incidence rate of osteonecrosis of jaw after cancer treated with bisphosphonates and denosumab: A systematic review and meta‑analysis. Spec Care Dentist. 2024 Mar;44(2):530-41.

https://doi.org/10.1111/scd.12877

PMid:37219080

Nisi M, Karapetsa D, Gennai S, Ramaglia L, Graziani F, Gabriele M. Conservative surgical treatment of medication related osteonecrosis of the jaw (MRONJ) lesions in patients affected by osteoporosis exposed to oral bisphosphonates: 24 months follow-up. J Cranio-Maxillofac Surg. 2018 Jul;46(7):1153-8.

https://doi.org/10.1016/j.jcms.2018.05.003

PMid:29802059

Khan AA, Morrison A, Kendler DL, Rizzoli R, Hanley DA, Felsenberg D, et al. Case-Based Review of Osteonecrosis of the Jaw (ONJ) and Application of the International Recommendations for Management From the International Task Force on ONJ. J Clin Densitom. 2017 Jan;20(1):8-24.

https://doi.org/10.1016/j.jocd.2016.09.005

PMid:27956123

Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018 Oct;180:143-62.

https://doi.org/10.1016/j.biomaterials.2018.07.017

PMid:30036727 PMCid:PMC6710094

Giudice A, Antonelli A, Chiarella E, Baudi F, Barni T, Di Vito A. The Case of Medication-Related Osteonecrosis of the Jaw Addressed from a Pathogenic Point of View. Innovative Therapeutic Strategies: Focus on the Most Recent Discoveries on Oral Mesenchymal Stem Cell-Derived Exosomes. Pharmaceuticals. 2020 Nov 25;13(12):423.

https://doi.org/10.3390/ph13120423

PMid:33255626 PMCid:PMC7760182

Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol. 2022 Mar;918:174657.

https://doi.org/10.1016/j.ejphar.2021.174657

PMid:34871557

Zhang J, Che L, Wu Y, Zhou L, Liu L, Yue Y, et al. Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix. Coleman C, editor. J Tissue Eng Regen Med. 2023 Feb 6;2023:1-13.

https://doi.org/10.1155/2023/5280613

Harikrishnan P, Islam H, Sivasamy A. Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration. J Craniofac Surg. 2019;30(1):265.

https://doi.org/10.1097/SCS.0000000000004857

PMid:30339597

Shah KN, Racine J, Jones LC, Aaron RK. Pathophysiology and risk factors for osteonecrosis. Curr Rev Musculoskelet Med. 2015 Sep;8(3):201-9.

https://doi.org/10.1007/s12178-015-9277-8

PMid:26142896 PMCid:PMC4596210

Inoue M, Ono T, Kameo Y, Sasaki F, Ono T, Adachi T, et al. Forceful mastication activates osteocytes and builds a stout jawbone. Sci Rep. 2019 Mar 20;9(1):4404.

https://doi.org/10.1038/s41598-019-40463-3

PMid:30890758 PMCid:PMC6424982

Kün-Darbois JD, Fauvel F. Medication-related osteonecrosis and osteoradionecrosis of the jaws: Update and current management. Morphologie. 2021;105(349):170-87.

https://doi.org/10.1016/j.morpho.2020.11.008

PMid:33281055

Woo SB, Hellstein JW, Kalmar JR. Systematic Review: Bisphosphonates and Osteonecrosis of the Jaws. Ann Intern Med. 2006 May 16;144(10):753.

https://doi.org/10.7326/0003-4819-144-10-200605160-00009

PMid:16702591

Lombard T, Neirinckx V, Rogister B, Gilon Y, Wislet S. Medication‐Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Tatullo M, editor. Stem Cells Int. 2016 Jan;2016(1):8768162.

https://doi.org/10.1155/2016/8768162

PMid:27721837 PMCid:PMC5046039

Govaerts D, Piccart F, Ockerman A, Coropciuc R, Politis C, Jacobs R. Adjuvant therapies for MRONJ: A systematic review. Bone. 2020 Dec;141:115676.

https://doi.org/10.1016/j.bone.2020.115676

PMid:33022455

Lechner J, Rudi T, Von Baehr V. Osteoimmunology of tumor necrosis factor-alpha, IL-6, and RANTES/CCL5: a review of known and poorly understood inflammatory patterns in osteonecrosis. Clin Cosmet Investig Dent. 2018 Nov;Volume 10:251-62.

https://doi.org/10.2147/CCIDE.S184498

PMid:30519117 PMCid:PMC6233471

Movila A, Mawardi H, Nishimura K, Kiyama T, Egashira K, Kim JY, et al. Possible pathogenic engagement of soluble Semaphorin 4D produced by γδT cells in medication-related osteonecrosis of the jaw (MRONJ). Biochem Biophys Res Commun. 2016 Nov;480(1):42-7.

https://doi.org/10.1016/j.bbrc.2016.10.012

PMid:27720716

Soma T, Iwasaki R, Sato Y, Kobayashi T, Nakamura S, Kaneko Y, et al. Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. J Bone Miner Metab. 2021 May;39(3):372-84.

https://doi.org/10.1007/s00774-020-01174-2

PMid:33200254

Di Fede O, Canepa F, Panzarella V, Mauceri R, Del Gaizo C, Bedogni A, et al. The Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ): A Systematic Review with a Pooled Analysis of Only Surgery versus Combined Protocols. Int J Environ Res Public Health. 2021 Aug 10;18(16):8432.

https://doi.org/10.3390/ijerph18168432

PMid:34444181 PMCid:PMC8392050

Şahin O, Akan E, Tatar B, Ekmekcioğlu C, Ünal N, Odabaşı O. Combined approach to treatment of advanced stages of medication-related osteonecrosis of the jaw patients. Braz J Otorhinolaryngol. 2022 Aug 15;88:613-20.

https://doi.org/10.1016/j.bjorl.2021.04.004

PMid:34023243 PMCid:PMC9422660

On SW, Cho SW, Byun SH, Yang BE. Various Therapeutic Methods for the Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) and Their Limitations: A Narrative Review on New Molecular and Cellular Therapeutic Approaches. Antioxidants. 2021 Apr 27;10(5):680.

https://doi.org/10.3390/antiox10050680

PMid:33925361 PMCid:PMC8145192

Nisi M, Izzetti R, Gennai S, Bellini P, Graziani F, Gabriele M. Surgical Management of Medication-Related Osteonecrosis of the Jaw Patients Related to Dental Implants. J Craniofac Surg. 2020 Jun;31(4):1037-41.

https://doi.org/10.1097/SCS.0000000000006283

PMid:32102027

Giudice A, Barone S, Diodati F, Antonelli A, Nocini R, Cristofaro MG. Can Surgical Management Improve Resolution of Medication-Related Osteonecrosis of the Jaw at Early Stages? A Prospective Cohort Study. J Oral Maxillofac Surg. 2020 Nov;78(11):1986-99.

https://doi.org/10.1016/j.joms.2020.05.037

PMid:32615096

Albanese M, Zotti F, Capocasale G, Bonetti S, Lonardi F, Nocini PF. Conservative non‐surgical management in medication related osteonecrosis of the jaw: A retrospective study. Clin Exp Dent Res. 2020 Oct;6(5):512-8.

https://doi.org/10.1002/cre2.303

PMid:32614524 PMCid:PMC7545224

El-Rabbany M, Lam DK, Shah PS, Azarpazhooh A. Surgical Management of Medication-Related Osteonecrosis of the Jaw Is Associated With Improved Disease Resolution: A Retrospective Cohort Study. J Oral Maxillofac Surg. 2019 Sep;77(9):1816-22.

https://doi.org/10.1016/j.joms.2019.03.040

PMid:31054989

Holkar K, Vaidya A, Pethe P, Kale V, Ingavle G. Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. Materialia. 2020 Aug;12:100736.

https://doi.org/10.1016/j.mtla.2020.100736

Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T. Transplantation of Noncultured Stromal Vascular Fraction Cells of Adipose Tissue Ameliorates Osteonecrosis of the Jaw-Like Lesions in Mice. J Bone Miner Res. 2018 Jan 1;33(1):154-66.

https://doi.org/10.1002/jbmr.3292

PMid:28902422

Aljohani MH. Platelet-Rich Plasma in the Prevention and Treatment of Medication-Related Osteonecrosis of the Jaw: A Systematic Review and Meta-Analysis. J Craniofac Surg. 2024;

https://doi.org/10.1097/SCS.0000000000010664

PMid:39287416

Muñoz-Salgado A, Silva Ff, Padín-Iruegas Me, Camolesi Gc, Bernaola-Paredes We, Veronese Hr, et al. Leukocyte and platelet rich fibrin in the management of medication-related osteonecrosis of the jaw: A systematic review and meta-analysis. Med Oral Patol Oral Cirugia Bucal. 2023;28(4):e317-29.

https://doi.org/10.4317/medoral.25733

PMid:36641740 PMCid:PMC10314351

Yang G, Kim YN, Kim H, Lee BK. Effect of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells on Bisphosphonate-Related Osteonecrosis of the Jaw. Tissue Eng Regen Med. 2021 Dec;18(6):975-88.

https://doi.org/10.1007/s13770-021-00372-x

PMid:34347277 PMCid:PMC8599575

Cicciu M, Herford AS, Juodžbalys G, Stoffella E. Recombinant Human Bone Morphogenetic Protein Type 2 Application for a Possible Treatment of Bisphosphonates-Related Osteonecrosis of the Jaw. J Craniofac Surg. 2012;23(3):784-8.

https://doi.org/10.1097/SCS.0b013e31824dbdd4

PMid:22565901

Gianfilippo Nifosì AFN Lorenzo Nifosì. Mesenchymal stem cells in the treatment of osteonecrosis of the jaw. J Korean Assoc Oral Maxillofac Surg. 2021;47:65-75.

https://doi.org/10.5125/jkaoms.2021.47.2.65

PMid:33911038 PMCid:PMC8084742

Ricotta F, Principe CD, Arcangeli GL. The use of platelet rich plasma in the management of medication-related osteonecrosis of the jaws: a cohort study. Qeios. 2021;

https://doi.org/10.32388/9CKOR9

Mourão CF de AB, Calasans-Maia MD, Fabbro MD, Vieira FLD, Machado RC de M, Capella R, et al. The use of Platelet-rich Fibrin in the management of medication-related osteonecrosis of the jaw: A case series. J Stomatol Oral Maxillofac Surg. 2019;

Min SH, Kang NE, Song SI, Lee JK. Regenerative effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) after sequestrectomy of medication-related osteonecrosis of the jaw (MRONJ). J Korean Assoc Oral Maxillofac Surg. 2020;46:191-6.

https://doi.org/10.5125/jkaoms.2020.46.3.191

PMid:32606280 PMCid:PMC7338633

Fliefel R, Ehrenfeld M, Otto S. Induced pluripotent stem cells (iPSCs) as a new source of bone in reconstructive surgery: A systematic review and meta-analysis of preclinical studies. J Tissue Eng Regen Med. 2018;12:1780-97.

https://doi.org/10.1002/term.2697

PMid:29763985

Kaibuchi N, Iwata T, Koga YK, Okamoto T. Novel Cell Therapy Using Mesenchymal Stromal Cell Sheets for Medication-Related Osteonecrosis of the Jaw. Front Bioeng Biotechnol. 2022;10:902349.

https://doi.org/10.3389/fbioe.2022.902349

PMid:35646846 PMCid:PMC9133503

Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jämsen E, et al. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017 Dec;8(1):277.

https://doi.org/10.1186/s13287-017-0730-z

PMid:29212557 PMCid:PMC5719931

Matsuura Y, Atsuta I, Ayukawa Y, Yamaza T, Kondo R, Takahashi A, et al. Therapeutic interactions between mesenchymal stem cells for healing medication-related osteonecrosis of the jaw. Stem Cell Res Ther. 2016 Dec;7(1):119.

https://doi.org/10.1186/s13287-016-0367-3

PMid:27530108 PMCid:PMC4988021

Steller D, Herbst N, Pries R, Juhl D, Hakim SG. Impact of incubation method on the release of growth factors in non-Ca2+-activated PRP, Ca2+-activated PRP, PRF and A-PRF. J Cranio-Maxillofac Surg. 2019 Feb;47(2):365-72.

https://doi.org/10.1016/j.jcms.2018.10.017

PMid:30578012

Sonker A, Dubey A. Determining the Effect of Preparation and Storage: An Effort to Streamline Platelet Components as a Source of Growth Factors for Clinical Application. Transfus Med Hemotherapy. 2015;42(3):174-80.

https://doi.org/10.1159/000371504

PMid:26195931 PMCid:PMC4483287

Sarkarat F, Kalantar Motamedi MH, Jahanbani J, Sepehri D, Kahali R, Nematollahi Z. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-related osteonecrosis of the jaws. Trauma Mon [Internet]. 2014 Mar 18 [cited 2024 Oct 4];19(2). Available from: http://traumamon.com/en/articles/76245.html

https://doi.org/10.5812/traumamon.17196

PMid:25032151 PMCid:PMC4080617

Malhotra A, Pelletier MH, Yu Y, Walsh WR. Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg. 2013 Feb;133(2):153-65.

https://doi.org/10.1007/s00402-012-1641-1

PMid:23197184

Abo‐Heikal MM, El‐Shafei JM, Shouman SA, Roshdy NN. Evaluation of the efficacy of injectable platelet‐rich fibrin versus platelet‐rich plasma in the regeneration of traumatized necrotic immature maxillary anterior teeth: A randomized clinical trial. Dent Traumatol. 2024 Feb;40(1):61-75.

https://doi.org/10.1111/edt.12881

PMid:37612879

Kang YH, Jeon SH, Park JY, Chung JH, Choung YH, Choung HW, et al. Platelet-Rich Fibrin is a Bioscaffold and Reservoir of Growth Factors for Tissue Regeneration. Tissue Eng Part A. 2011 Feb;17(3-4):349-59.

https://doi.org/10.1089/ten.tea.2010.0327

PMid:20799908

M. Dohan Ehrenfest D, Bielecki T, Jimbo R, Barbe G, Del Corso M, Inchingolo F, et al. Do the Fibrin Architecture and Leukocyte Content Influence the Growth Factor Release of Platelet Concentrates? An Evidence-based Answer Comparing a Pure Platelet-Rich Plasma (P-PRP) Gel and a Leukocyte- and Platelet-Rich Fibrin (L-PRF). Curr Pharm Biotechnol. 2012 May 1;13(7):1145-52.

https://doi.org/10.2174/138920112800624382

PMid:21740377

Moon YJ, Jeong S, Lee KB. Bone Morphogenetic Protein 2 Promotes Bone Formation in Bone Defects in Which Bone Remodeling Is Suppressed by Long-Term and High-Dose Zoledronic Acid. Bioengineering [Internet]. 2023;10(86). Available from: https://doi.org/10.3390/bioengineering10010086

https://doi.org/10.3390/bioengineering10010086

PMid:36671658 PMCid:PMC9854702

Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, Xie J. Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration. Adv Healthc Mater. 2018;7(10):1701415.

https://doi.org/10.1002/adhm.201701415

PMid:29498244 PMCid:PMC6317907

Bakhtiarimoghadam B, Shirian S, Mirzaei E, Sharifi S, Karimi I, Gharati G, et al. Comparison capacity of collagen hydrogel, mix-powder and in situ hydroxyapatite/collagen hydrogel scaffolds with and without mesenchymal stem cells and platelet-rich plasma in regeneration of critical sized bone defect in a rabbit animal model. J Biomed Mater Res. 2021;

https://doi.org/10.1002/jbm.b.34867

PMid:34008330

Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, et al. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS Appl Mater Interfaces. 2021;13(16):18472-87.

https://doi.org/10.1021/acsami.0c22671

PMid:33856781

Zhang L, Yuan Z, Shafiq M, Cai Y, Wang Z, Nie P, et al. An Injectable Integration of Autologous Bioactive Concentrated Growth Factor and Gelatin Methacrylate Hydrogel with Efficient Growth Factor Release and 3D Spatial Structure for Accelerated Wound Healing. Macromol Biosci. 2023 Apr;23(4):2200500.

https://doi.org/10.1002/mabi.202200500

PMid:36788664

Yamamoto M, Takahashi Y, Tabata Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials. 2003 Nov;24(24):4375-83.

https://doi.org/10.1016/S0142-9612(03)00337-5

PMid:12922150

Thavornyutikarn B, Sungkhaphan P, Kaewkong P, Pornsuwan S, Risangud N, Singhatanadgit W, et al. Biodegradable Dual-Function Nanocomposite Hydrogels for Prevention of Bisphosphonate-Related Osteonecrosis of the Jaw. ACS Appl Bio Mater. 2023 Apr 17;6(4):1658-75.

https://doi.org/10.1021/acsabm.3c00110

PMid:36961749

Wu Y, Zhou L, Li Y, Lou X. Osteoblast‐derived extracellular matrix coated PLLA fibroin composite nanofibers promote osteogenic differentiation of bone mesenchymal stem cells. J Biomed Mater Res A. 2022 Mar;110(3):525-34.

https://doi.org/10.1002/jbm.a.37302

PMid:34494712

Razmara F, Bayat M, Shirian S, Shabankare G, Mohamadnia A, Mortazavi M, et al. Application of a Collagen Scaffold Saturated with Platelet-Rich Plasma in Prevention of Bisphosphonate-Related Osteonecrosis of the Jaw in the Rat Animal Model. Heliyon. 2021;7(e06930).

https://doi.org/10.1016/j.heliyon.2021.e06930

PMid:34007929 PMCid:PMC8111602

Mazzoni E, Mazziotta C, Iaquinta MR, Lanzillotti C, Fortini F, D'Agostino A, et al. Enhanced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Hybrid Hydroxylapatite/Collagen Scaffold. Front Cell Dev Biol. 2021;8:610570.

https://doi.org/10.3389/fcell.2020.610570

PMid:33537303 PMCid:PMC7849836

Toro LF, De Mello-Neto JM, Santos FFVD, Ferreira LC, Statkievicz C, Cintra LTÂ, et al. Application of Autologous Platelet-Rich Plasma on Tooth Extraction Site Prevents Occurence of Medication-Related Osteonecrosis of the Jaws in Rats. Sci Rep. 2019 Jan 10;9(1):22.

https://doi.org/10.1038/s41598-018-37063-y

PMid:30631095 PMCid:PMC6328584

Adolpho LF, Ribeiro LMS, Freitas GP, Lopes HB, Gomes MPO, Ferraz EP, et al. Mesenchymal Stem Cells Combined with a P(VDF-TrFE)/BaTiO3 Scaffold and Photobiomodulation Therapy Enhance Bone Repair in Rat Calvarial Defects. J Funct Biomater. 2023 Jun 1;14(6):306.

https://doi.org/10.3390/jfb14060306

PMid:37367270 PMCid:PMC10299270

M.F. Escobedo LMJ S Junquera, C Gonzalez, S Vasatyuk, L Gallego, E Barbeito. Efficacy of complementary treatment with autologous platelet concentrates and/or mesenchymal stem cells in chemical osteonecrosis of the jaw: Systematic review of the literature. J Stomatol Oral Maxillofac Surg. 2021;

https://doi.org/10.1016/j.jormas.2021.01.015

PMid:33609789

Feier AM, Portan D, Manu D, Kostopoulos V, Kotrotsos A, Strnad G, et al. Primary MSCs for Personalized Medicine: Ethical Challenges, Isolation and Biocompatibility Evaluation of 3D Electrospun and Printed Scaffolds. Biomedicines. 2022;10.

https://doi.org/10.3390/biomedicines10071563

PMid:35884868 PMCid:PMC9313419

Volarevic V, Markovic B, Gazdic M, Volarević A, Jovicic N, Arsenijević N, et al. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci. 2018;15:36-45.

https://doi.org/10.7150/ijms.21666

PMid:29333086 PMCid:PMC5765738

de Kanter AF, Jongsma K, Verhaar M, Bredenoord A. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. Tissue Eng Part B Rev. 2022;

https://doi.org/10.1089/ten.teb.2022.0033

PMid:36112697 PMCid:PMC10122262

Navani A. Biologics in Interventional Spinal Procedure: The Past, the Present, and the Vision. Pain Physician. 2023;26:E775-85.

https://doi.org/10.36076/ppj.2023.26.E775

Selvam S, Thomas M, Bhowmick T, Chandru A. Bioprinting of exosomes: Prospects and challenges for clinical applications. Int J Bioprinting. 2023;

https://doi.org/10.18063/ijb.690

PMid:37214319 PMCid:PMC10195394

Charbe N, Tambuwala M, Palakurthi S, Warokar A, Hromić-Jahjefendić A, Bakshi H, et al. Biomedical applications of three‐dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med. 2022;

https://doi.org/10.1002/btm2.10333

PMid:36684092 PMCid:PMC9842068

Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol. 2022 Apr 11;10:824156.

https://doi.org/10.3389/fbioe.2022.824156

PMid:35480972 PMCid:PMC9035802

Stanco D, Urban P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations. Bioprinting Amst Neth. 2020;

https://doi.org/10.1016/j.bprint.2020.e00103

PMid:34853818 PMCid:PMC8609155

Lam EHY, Yu F, Zhu S, Wang Z. 3D Bioprinting for Next-Generation Personalized Medicine. Int J Mol Sci. 2023;24.

https://doi.org/10.3390/ijms24076357

PMid:37047328 PMCid:PMC10094501

Xu JL, Ji J, Jiao J, Zheng LZ, Hong Q, Tang H, et al. 3D Printing for Bone-Cartilage Interface Regeneration. Front Bioeng Biotechnol. 2022;

https://doi.org/10.3389/fbioe.2022.828921

PMid:35237582 PMCid:PMC8882993

Vidal L, Kampleitner C, Brennan M, Hoornaert A, Layrolle P. Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Front Bioeng Biotechnol. 2020;

https://doi.org/10.3389/fbioe.2020.00061

PMid:32117940 PMCid:PMC7029716

Dutta S, Ganguly K, Hexiu J, Randhawa A, Moniruzzaman M, Lim K. A 3D Bioprinted Nanoengineered Hydrogel with Photo-activated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation. Macromol Biosci. 2023;

https://doi.org/10.1002/mabi.202300096

PMid:37087681

Downloads

Published

2024-12-08

How to Cite

Taghizadeh , E., Mirmohammadi, S. M. M., Khosravi , A., Mojarab , G., & Shahoon , H. (2024). Advances in Regenerative Medicine for the Treatment of Osteonecrosis of the Jaw : Advances in Treatment of Osteonecrosis of the Jaw . Galen Medical Journal, 13(SP1), e3676. Retrieved from https://journals.salviapub.com/index.php/gmj/article/view/3676