Advances in Regenerative Medicine for the Treatment of Osteonecrosis of the Jaw
Advances in Treatment of Osteonecrosis of the Jaw
Keywords:
Osteonecrosis of The Jaw; Regenerative Medicine; Biomaterial; 3D Bioprinting; Mesenchymal Stem Cells; Platelet-Rich PlasmaAbstract
Osteonecrosis of the jaw (ONJ) is a debilitating condition characterized by progressive bone tissue necrosis, commonly linked to bisphosphonates, radiation therapy, or trauma. Traditional treatments, such as surgical debridement and conservative management, often fail to fully restore bone function, driving the need for alternative therapeutic strategies. Regenerative medicine, particularly cellular therapies and biomaterials, has emerged as a promising field in ONJ treatment. This review explores recent advancements in regenerative approaches for ONJ, with a focus on Mesenchymal stem cells (MSCs) and bioengineered scaffolds. MSCs, with their dual ability to differentiate into osteoblasts and modulate immune responses, play a crucial role in bone regeneration by both forming new bone tissue and reducing inflammation. Bioengineered scaffolds, such as hydrogels, bioactive ceramics, and nanomaterials, provide essential structural support and create a conducive environment for cellular growth and tissue repair. The combination of MSCs with these biomaterials has demonstrated a synergistic effect, significantly enhancing bone healing and regeneration. Additionally, emerging techniques such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and bone morphogenetic proteins (BMPs) offer new avenues for improving clinical outcomes in ONJ patients. However, several challenges remain, including regulatory barriers, the need for standardized cell isolation and delivery protocols, and scalability issues for clinical application. This review further examines emerging technologies, such as 3D bioprinting and personalized medicine, which offer the potential to tailor regenerative treatments to individual patients, thereby improving both the efficacy and longevity of therapies. In conclusion, while significant progress has been made in the application of regenerative medicine for ONJ, continued research is essential to address current limitations, optimize treatment protocols, and ensure broader clinical adoption. Advances in cellular therapies and biomaterials hold transformative potential for improving therapeutic outcomes in patients with ONJ.
References
Lončar Brzak B, Horvat Aleksijević L, Vindiš E, Kordić I, Granić M, Vidović Juras D, et al. Osteonecrosis of the Jaw. Dent J. 2023 Jan;11(1):23.
https://doi.org/10.3390/dj11010023
PMid:36661560 PMCid:PMC9858620
Chang J, Hakam AE, McCauley LK. Current Understanding of the Pathophysiology of Osteonecrosis of the Jaw. Curr Osteoporos Rep. 2018 Oct;16(5):584-95.
https://doi.org/10.1007/s11914-018-0474-4
PMid:30155844
AlDhalaan NA, BaQais A, Al-Omar A. Medication-related Osteonecrosis of the Jaw: A Review. Cureus [Internet]. 2020 Feb 10 [cited 2024 Oct 1]; Available from: https://www.cureus.com/articles/27094-medication-related-osteonecrosis-of-the-jaw-a-review
https://doi.org/10.7759/cureus.6944
PMid:32190495 PMCid:PMC7067354
Zhang C, Shen G, Li H, Xin Y, Shi M, Zheng Y, et al. Incidence rate of osteonecrosis of jaw after cancer treated with bisphosphonates and denosumab: A systematic review and meta‑analysis. Spec Care Dentist. 2024 Mar;44(2):530-41.
https://doi.org/10.1111/scd.12877
PMid:37219080
Nisi M, Karapetsa D, Gennai S, Ramaglia L, Graziani F, Gabriele M. Conservative surgical treatment of medication related osteonecrosis of the jaw (MRONJ) lesions in patients affected by osteoporosis exposed to oral bisphosphonates: 24 months follow-up. J Cranio-Maxillofac Surg. 2018 Jul;46(7):1153-8.
https://doi.org/10.1016/j.jcms.2018.05.003
PMid:29802059
Khan AA, Morrison A, Kendler DL, Rizzoli R, Hanley DA, Felsenberg D, et al. Case-Based Review of Osteonecrosis of the Jaw (ONJ) and Application of the International Recommendations for Management From the International Task Force on ONJ. J Clin Densitom. 2017 Jan;20(1):8-24.
https://doi.org/10.1016/j.jocd.2016.09.005
PMid:27956123
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018 Oct;180:143-62.
https://doi.org/10.1016/j.biomaterials.2018.07.017
PMid:30036727 PMCid:PMC6710094
Giudice A, Antonelli A, Chiarella E, Baudi F, Barni T, Di Vito A. The Case of Medication-Related Osteonecrosis of the Jaw Addressed from a Pathogenic Point of View. Innovative Therapeutic Strategies: Focus on the Most Recent Discoveries on Oral Mesenchymal Stem Cell-Derived Exosomes. Pharmaceuticals. 2020 Nov 25;13(12):423.
https://doi.org/10.3390/ph13120423
PMid:33255626 PMCid:PMC7760182
Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol. 2022 Mar;918:174657.
https://doi.org/10.1016/j.ejphar.2021.174657
PMid:34871557
Zhang J, Che L, Wu Y, Zhou L, Liu L, Yue Y, et al. Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix. Coleman C, editor. J Tissue Eng Regen Med. 2023 Feb 6;2023:1-13.
https://doi.org/10.1155/2023/5280613
Harikrishnan P, Islam H, Sivasamy A. Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration. J Craniofac Surg. 2019;30(1):265.
https://doi.org/10.1097/SCS.0000000000004857
PMid:30339597
Shah KN, Racine J, Jones LC, Aaron RK. Pathophysiology and risk factors for osteonecrosis. Curr Rev Musculoskelet Med. 2015 Sep;8(3):201-9.
https://doi.org/10.1007/s12178-015-9277-8
PMid:26142896 PMCid:PMC4596210
Inoue M, Ono T, Kameo Y, Sasaki F, Ono T, Adachi T, et al. Forceful mastication activates osteocytes and builds a stout jawbone. Sci Rep. 2019 Mar 20;9(1):4404.
https://doi.org/10.1038/s41598-019-40463-3
PMid:30890758 PMCid:PMC6424982
Kün-Darbois JD, Fauvel F. Medication-related osteonecrosis and osteoradionecrosis of the jaws: Update and current management. Morphologie. 2021;105(349):170-87.
https://doi.org/10.1016/j.morpho.2020.11.008
PMid:33281055
Woo SB, Hellstein JW, Kalmar JR. Systematic Review: Bisphosphonates and Osteonecrosis of the Jaws. Ann Intern Med. 2006 May 16;144(10):753.
https://doi.org/10.7326/0003-4819-144-10-200605160-00009
PMid:16702591
Lombard T, Neirinckx V, Rogister B, Gilon Y, Wislet S. Medication‐Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Tatullo M, editor. Stem Cells Int. 2016 Jan;2016(1):8768162.
https://doi.org/10.1155/2016/8768162
PMid:27721837 PMCid:PMC5046039
Govaerts D, Piccart F, Ockerman A, Coropciuc R, Politis C, Jacobs R. Adjuvant therapies for MRONJ: A systematic review. Bone. 2020 Dec;141:115676.
https://doi.org/10.1016/j.bone.2020.115676
PMid:33022455
Lechner J, Rudi T, Von Baehr V. Osteoimmunology of tumor necrosis factor-alpha, IL-6, and RANTES/CCL5: a review of known and poorly understood inflammatory patterns in osteonecrosis. Clin Cosmet Investig Dent. 2018 Nov;Volume 10:251-62.
https://doi.org/10.2147/CCIDE.S184498
PMid:30519117 PMCid:PMC6233471
Movila A, Mawardi H, Nishimura K, Kiyama T, Egashira K, Kim JY, et al. Possible pathogenic engagement of soluble Semaphorin 4D produced by γδT cells in medication-related osteonecrosis of the jaw (MRONJ). Biochem Biophys Res Commun. 2016 Nov;480(1):42-7.
https://doi.org/10.1016/j.bbrc.2016.10.012
PMid:27720716
Soma T, Iwasaki R, Sato Y, Kobayashi T, Nakamura S, Kaneko Y, et al. Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. J Bone Miner Metab. 2021 May;39(3):372-84.
https://doi.org/10.1007/s00774-020-01174-2
PMid:33200254
Di Fede O, Canepa F, Panzarella V, Mauceri R, Del Gaizo C, Bedogni A, et al. The Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ): A Systematic Review with a Pooled Analysis of Only Surgery versus Combined Protocols. Int J Environ Res Public Health. 2021 Aug 10;18(16):8432.
https://doi.org/10.3390/ijerph18168432
PMid:34444181 PMCid:PMC8392050
Şahin O, Akan E, Tatar B, Ekmekcioğlu C, Ünal N, Odabaşı O. Combined approach to treatment of advanced stages of medication-related osteonecrosis of the jaw patients. Braz J Otorhinolaryngol. 2022 Aug 15;88:613-20.
https://doi.org/10.1016/j.bjorl.2021.04.004
PMid:34023243 PMCid:PMC9422660
On SW, Cho SW, Byun SH, Yang BE. Various Therapeutic Methods for the Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) and Their Limitations: A Narrative Review on New Molecular and Cellular Therapeutic Approaches. Antioxidants. 2021 Apr 27;10(5):680.
https://doi.org/10.3390/antiox10050680
PMid:33925361 PMCid:PMC8145192
Nisi M, Izzetti R, Gennai S, Bellini P, Graziani F, Gabriele M. Surgical Management of Medication-Related Osteonecrosis of the Jaw Patients Related to Dental Implants. J Craniofac Surg. 2020 Jun;31(4):1037-41.
https://doi.org/10.1097/SCS.0000000000006283
PMid:32102027
Giudice A, Barone S, Diodati F, Antonelli A, Nocini R, Cristofaro MG. Can Surgical Management Improve Resolution of Medication-Related Osteonecrosis of the Jaw at Early Stages? A Prospective Cohort Study. J Oral Maxillofac Surg. 2020 Nov;78(11):1986-99.
https://doi.org/10.1016/j.joms.2020.05.037
PMid:32615096
Albanese M, Zotti F, Capocasale G, Bonetti S, Lonardi F, Nocini PF. Conservative non‐surgical management in medication related osteonecrosis of the jaw: A retrospective study. Clin Exp Dent Res. 2020 Oct;6(5):512-8.
https://doi.org/10.1002/cre2.303
PMid:32614524 PMCid:PMC7545224
El-Rabbany M, Lam DK, Shah PS, Azarpazhooh A. Surgical Management of Medication-Related Osteonecrosis of the Jaw Is Associated With Improved Disease Resolution: A Retrospective Cohort Study. J Oral Maxillofac Surg. 2019 Sep;77(9):1816-22.
https://doi.org/10.1016/j.joms.2019.03.040
PMid:31054989
Holkar K, Vaidya A, Pethe P, Kale V, Ingavle G. Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. Materialia. 2020 Aug;12:100736.
https://doi.org/10.1016/j.mtla.2020.100736
Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T. Transplantation of Noncultured Stromal Vascular Fraction Cells of Adipose Tissue Ameliorates Osteonecrosis of the Jaw-Like Lesions in Mice. J Bone Miner Res. 2018 Jan 1;33(1):154-66.
https://doi.org/10.1002/jbmr.3292
PMid:28902422
Aljohani MH. Platelet-Rich Plasma in the Prevention and Treatment of Medication-Related Osteonecrosis of the Jaw: A Systematic Review and Meta-Analysis. J Craniofac Surg. 2024;
https://doi.org/10.1097/SCS.0000000000010664
PMid:39287416
Muñoz-Salgado A, Silva Ff, Padín-Iruegas Me, Camolesi Gc, Bernaola-Paredes We, Veronese Hr, et al. Leukocyte and platelet rich fibrin in the management of medication-related osteonecrosis of the jaw: A systematic review and meta-analysis. Med Oral Patol Oral Cirugia Bucal. 2023;28(4):e317-29.
https://doi.org/10.4317/medoral.25733
PMid:36641740 PMCid:PMC10314351
Yang G, Kim YN, Kim H, Lee BK. Effect of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells on Bisphosphonate-Related Osteonecrosis of the Jaw. Tissue Eng Regen Med. 2021 Dec;18(6):975-88.
https://doi.org/10.1007/s13770-021-00372-x
PMid:34347277 PMCid:PMC8599575
Cicciu M, Herford AS, Juodžbalys G, Stoffella E. Recombinant Human Bone Morphogenetic Protein Type 2 Application for a Possible Treatment of Bisphosphonates-Related Osteonecrosis of the Jaw. J Craniofac Surg. 2012;23(3):784-8.
https://doi.org/10.1097/SCS.0b013e31824dbdd4
PMid:22565901
Gianfilippo Nifosì AFN Lorenzo Nifosì. Mesenchymal stem cells in the treatment of osteonecrosis of the jaw. J Korean Assoc Oral Maxillofac Surg. 2021;47:65-75.
https://doi.org/10.5125/jkaoms.2021.47.2.65
PMid:33911038 PMCid:PMC8084742
Ricotta F, Principe CD, Arcangeli GL. The use of platelet rich plasma in the management of medication-related osteonecrosis of the jaws: a cohort study. Qeios. 2021;
https://doi.org/10.32388/9CKOR9
Mourão CF de AB, Calasans-Maia MD, Fabbro MD, Vieira FLD, Machado RC de M, Capella R, et al. The use of Platelet-rich Fibrin in the management of medication-related osteonecrosis of the jaw: A case series. J Stomatol Oral Maxillofac Surg. 2019;
Min SH, Kang NE, Song SI, Lee JK. Regenerative effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) after sequestrectomy of medication-related osteonecrosis of the jaw (MRONJ). J Korean Assoc Oral Maxillofac Surg. 2020;46:191-6.
https://doi.org/10.5125/jkaoms.2020.46.3.191
PMid:32606280 PMCid:PMC7338633
Fliefel R, Ehrenfeld M, Otto S. Induced pluripotent stem cells (iPSCs) as a new source of bone in reconstructive surgery: A systematic review and meta-analysis of preclinical studies. J Tissue Eng Regen Med. 2018;12:1780-97.
https://doi.org/10.1002/term.2697
PMid:29763985
Kaibuchi N, Iwata T, Koga YK, Okamoto T. Novel Cell Therapy Using Mesenchymal Stromal Cell Sheets for Medication-Related Osteonecrosis of the Jaw. Front Bioeng Biotechnol. 2022;10:902349.
https://doi.org/10.3389/fbioe.2022.902349
PMid:35646846 PMCid:PMC9133503
Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jämsen E, et al. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017 Dec;8(1):277.
https://doi.org/10.1186/s13287-017-0730-z
PMid:29212557 PMCid:PMC5719931
Matsuura Y, Atsuta I, Ayukawa Y, Yamaza T, Kondo R, Takahashi A, et al. Therapeutic interactions between mesenchymal stem cells for healing medication-related osteonecrosis of the jaw. Stem Cell Res Ther. 2016 Dec;7(1):119.
https://doi.org/10.1186/s13287-016-0367-3
PMid:27530108 PMCid:PMC4988021
Steller D, Herbst N, Pries R, Juhl D, Hakim SG. Impact of incubation method on the release of growth factors in non-Ca2+-activated PRP, Ca2+-activated PRP, PRF and A-PRF. J Cranio-Maxillofac Surg. 2019 Feb;47(2):365-72.
https://doi.org/10.1016/j.jcms.2018.10.017
PMid:30578012
Sonker A, Dubey A. Determining the Effect of Preparation and Storage: An Effort to Streamline Platelet Components as a Source of Growth Factors for Clinical Application. Transfus Med Hemotherapy. 2015;42(3):174-80.
https://doi.org/10.1159/000371504
PMid:26195931 PMCid:PMC4483287
Sarkarat F, Kalantar Motamedi MH, Jahanbani J, Sepehri D, Kahali R, Nematollahi Z. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-related osteonecrosis of the jaws. Trauma Mon [Internet]. 2014 Mar 18 [cited 2024 Oct 4];19(2). Available from: http://traumamon.com/en/articles/76245.html
https://doi.org/10.5812/traumamon.17196
PMid:25032151 PMCid:PMC4080617
Malhotra A, Pelletier MH, Yu Y, Walsh WR. Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg. 2013 Feb;133(2):153-65.
https://doi.org/10.1007/s00402-012-1641-1
PMid:23197184
Abo‐Heikal MM, El‐Shafei JM, Shouman SA, Roshdy NN. Evaluation of the efficacy of injectable platelet‐rich fibrin versus platelet‐rich plasma in the regeneration of traumatized necrotic immature maxillary anterior teeth: A randomized clinical trial. Dent Traumatol. 2024 Feb;40(1):61-75.
https://doi.org/10.1111/edt.12881
PMid:37612879
Kang YH, Jeon SH, Park JY, Chung JH, Choung YH, Choung HW, et al. Platelet-Rich Fibrin is a Bioscaffold and Reservoir of Growth Factors for Tissue Regeneration. Tissue Eng Part A. 2011 Feb;17(3-4):349-59.
https://doi.org/10.1089/ten.tea.2010.0327
PMid:20799908
M. Dohan Ehrenfest D, Bielecki T, Jimbo R, Barbe G, Del Corso M, Inchingolo F, et al. Do the Fibrin Architecture and Leukocyte Content Influence the Growth Factor Release of Platelet Concentrates? An Evidence-based Answer Comparing a Pure Platelet-Rich Plasma (P-PRP) Gel and a Leukocyte- and Platelet-Rich Fibrin (L-PRF). Curr Pharm Biotechnol. 2012 May 1;13(7):1145-52.
https://doi.org/10.2174/138920112800624382
PMid:21740377
Moon YJ, Jeong S, Lee KB. Bone Morphogenetic Protein 2 Promotes Bone Formation in Bone Defects in Which Bone Remodeling Is Suppressed by Long-Term and High-Dose Zoledronic Acid. Bioengineering [Internet]. 2023;10(86). Available from: https://doi.org/10.3390/bioengineering10010086
https://doi.org/10.3390/bioengineering10010086
PMid:36671658 PMCid:PMC9854702
Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, Xie J. Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration. Adv Healthc Mater. 2018;7(10):1701415.
https://doi.org/10.1002/adhm.201701415
PMid:29498244 PMCid:PMC6317907
Bakhtiarimoghadam B, Shirian S, Mirzaei E, Sharifi S, Karimi I, Gharati G, et al. Comparison capacity of collagen hydrogel, mix-powder and in situ hydroxyapatite/collagen hydrogel scaffolds with and without mesenchymal stem cells and platelet-rich plasma in regeneration of critical sized bone defect in a rabbit animal model. J Biomed Mater Res. 2021;
https://doi.org/10.1002/jbm.b.34867
PMid:34008330
Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, et al. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS Appl Mater Interfaces. 2021;13(16):18472-87.
https://doi.org/10.1021/acsami.0c22671
PMid:33856781
Zhang L, Yuan Z, Shafiq M, Cai Y, Wang Z, Nie P, et al. An Injectable Integration of Autologous Bioactive Concentrated Growth Factor and Gelatin Methacrylate Hydrogel with Efficient Growth Factor Release and 3D Spatial Structure for Accelerated Wound Healing. Macromol Biosci. 2023 Apr;23(4):2200500.
https://doi.org/10.1002/mabi.202200500
PMid:36788664
Yamamoto M, Takahashi Y, Tabata Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials. 2003 Nov;24(24):4375-83.
https://doi.org/10.1016/S0142-9612(03)00337-5
PMid:12922150
Thavornyutikarn B, Sungkhaphan P, Kaewkong P, Pornsuwan S, Risangud N, Singhatanadgit W, et al. Biodegradable Dual-Function Nanocomposite Hydrogels for Prevention of Bisphosphonate-Related Osteonecrosis of the Jaw. ACS Appl Bio Mater. 2023 Apr 17;6(4):1658-75.
https://doi.org/10.1021/acsabm.3c00110
PMid:36961749
Wu Y, Zhou L, Li Y, Lou X. Osteoblast‐derived extracellular matrix coated PLLA fibroin composite nanofibers promote osteogenic differentiation of bone mesenchymal stem cells. J Biomed Mater Res A. 2022 Mar;110(3):525-34.
https://doi.org/10.1002/jbm.a.37302
PMid:34494712
Razmara F, Bayat M, Shirian S, Shabankare G, Mohamadnia A, Mortazavi M, et al. Application of a Collagen Scaffold Saturated with Platelet-Rich Plasma in Prevention of Bisphosphonate-Related Osteonecrosis of the Jaw in the Rat Animal Model. Heliyon. 2021;7(e06930).
https://doi.org/10.1016/j.heliyon.2021.e06930
PMid:34007929 PMCid:PMC8111602
Mazzoni E, Mazziotta C, Iaquinta MR, Lanzillotti C, Fortini F, D'Agostino A, et al. Enhanced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Hybrid Hydroxylapatite/Collagen Scaffold. Front Cell Dev Biol. 2021;8:610570.
https://doi.org/10.3389/fcell.2020.610570
PMid:33537303 PMCid:PMC7849836
Toro LF, De Mello-Neto JM, Santos FFVD, Ferreira LC, Statkievicz C, Cintra LTÂ, et al. Application of Autologous Platelet-Rich Plasma on Tooth Extraction Site Prevents Occurence of Medication-Related Osteonecrosis of the Jaws in Rats. Sci Rep. 2019 Jan 10;9(1):22.
https://doi.org/10.1038/s41598-018-37063-y
PMid:30631095 PMCid:PMC6328584
Adolpho LF, Ribeiro LMS, Freitas GP, Lopes HB, Gomes MPO, Ferraz EP, et al. Mesenchymal Stem Cells Combined with a P(VDF-TrFE)/BaTiO3 Scaffold and Photobiomodulation Therapy Enhance Bone Repair in Rat Calvarial Defects. J Funct Biomater. 2023 Jun 1;14(6):306.
https://doi.org/10.3390/jfb14060306
PMid:37367270 PMCid:PMC10299270
M.F. Escobedo LMJ S Junquera, C Gonzalez, S Vasatyuk, L Gallego, E Barbeito. Efficacy of complementary treatment with autologous platelet concentrates and/or mesenchymal stem cells in chemical osteonecrosis of the jaw: Systematic review of the literature. J Stomatol Oral Maxillofac Surg. 2021;
https://doi.org/10.1016/j.jormas.2021.01.015
PMid:33609789
Feier AM, Portan D, Manu D, Kostopoulos V, Kotrotsos A, Strnad G, et al. Primary MSCs for Personalized Medicine: Ethical Challenges, Isolation and Biocompatibility Evaluation of 3D Electrospun and Printed Scaffolds. Biomedicines. 2022;10.
https://doi.org/10.3390/biomedicines10071563
PMid:35884868 PMCid:PMC9313419
Volarevic V, Markovic B, Gazdic M, Volarević A, Jovicic N, Arsenijević N, et al. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci. 2018;15:36-45.
https://doi.org/10.7150/ijms.21666
PMid:29333086 PMCid:PMC5765738
de Kanter AF, Jongsma K, Verhaar M, Bredenoord A. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. Tissue Eng Part B Rev. 2022;
https://doi.org/10.1089/ten.teb.2022.0033
PMid:36112697 PMCid:PMC10122262
Navani A. Biologics in Interventional Spinal Procedure: The Past, the Present, and the Vision. Pain Physician. 2023;26:E775-85.
https://doi.org/10.36076/ppj.2023.26.E775
Selvam S, Thomas M, Bhowmick T, Chandru A. Bioprinting of exosomes: Prospects and challenges for clinical applications. Int J Bioprinting. 2023;
https://doi.org/10.18063/ijb.690
PMid:37214319 PMCid:PMC10195394
Charbe N, Tambuwala M, Palakurthi S, Warokar A, Hromić-Jahjefendić A, Bakshi H, et al. Biomedical applications of three‐dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med. 2022;
https://doi.org/10.1002/btm2.10333
PMid:36684092 PMCid:PMC9842068
Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol. 2022 Apr 11;10:824156.
https://doi.org/10.3389/fbioe.2022.824156
PMid:35480972 PMCid:PMC9035802
Stanco D, Urban P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations. Bioprinting Amst Neth. 2020;
https://doi.org/10.1016/j.bprint.2020.e00103
PMid:34853818 PMCid:PMC8609155
Lam EHY, Yu F, Zhu S, Wang Z. 3D Bioprinting for Next-Generation Personalized Medicine. Int J Mol Sci. 2023;24.
https://doi.org/10.3390/ijms24076357
PMid:37047328 PMCid:PMC10094501
Xu JL, Ji J, Jiao J, Zheng LZ, Hong Q, Tang H, et al. 3D Printing for Bone-Cartilage Interface Regeneration. Front Bioeng Biotechnol. 2022;
https://doi.org/10.3389/fbioe.2022.828921
PMid:35237582 PMCid:PMC8882993
Vidal L, Kampleitner C, Brennan M, Hoornaert A, Layrolle P. Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Front Bioeng Biotechnol. 2020;
https://doi.org/10.3389/fbioe.2020.00061
PMid:32117940 PMCid:PMC7029716
Dutta S, Ganguly K, Hexiu J, Randhawa A, Moniruzzaman M, Lim K. A 3D Bioprinted Nanoengineered Hydrogel with Photo-activated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation. Macromol Biosci. 2023;
https://doi.org/10.1002/mabi.202300096
PMid:37087681
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.