A Critical Review of the Efficacy and Safety of Radiological Imaging Techniques in Pediatric Orthodontics
Review in Efficacy of Radiological Imaging Techniques in Pediatric Orthodontics
Keywords:
Pediatric Orthodontics; Radiographic Imaging; Cone-Beam Computed Tomography; Magnetic Resonance Imaging; Radiation ProtectionAbstract
Background: Radiological imaging plays a pivotal role in pediatric orthodontics, facilitating precise diagnosis, treatment planning, and monitoring of craniofacial anomalies and dental conditions. This narrative review critically evaluates the efficacy and safety of various imaging modalities in pediatric orthodontics, including cone-beam computed tomography (CBCT), magnetic resonance imaging (MRI), digital radiography, ultrasound, and emerging technologies such as artificial intelligence (AI) and low-intensity pulsed ultrasound (LIPUS). Materials and Methods: The review examines the literature on the use of different imaging techniques in pediatric orthodontics, focusing on their diagnostic capabilities, radiation exposure, and clinical applications. Results: While advanced imaging techniques have revolutionized orthodontic care, they present unique challenges, particularly concerning radiation exposure in pediatric patients. CBCT has emerged as an invaluable tool for complex cases, offering detailed three-dimensional visualizations crucial for assessing impacted teeth, skeletal discrepancies, and temporomandibular joint disorders. However, its higher radiation dose necessitates judicious use, guided by the ALARA (As Low As Reasonably Achievable) principle and dose optimization protocols. Alternatives such as MRI and LIPUS provide radiation-free diagnostic and therapeutic options, underscoring their growing role in pediatric orthodontics. Digital X-rays, with lower radiation doses and improved patient comfort, remain essential for routine assessments, while AI-driven technologies enhance diagnostic accuracy and streamline clinical workflows. Conclusion: The review shows the critical balance between efficacy and safety in pediatric radiological imaging. Innovations in imaging technology, such as ultra-low-dose CBCT and AI-based diagnostic tools, are paving the way for safer, more precise orthodontic care.
References
Ramdan KK. Digital Orthodontics: An overview. MSA Dental Journal. 2023;2(2):49-53.
https://doi.org/10.21608/msadj.2023.211756.1020
Scarfe WC, Azevedo B, Toghyani S, Farman AG. Cone beam computed tomographic imaging in orthodontics. Australian dental journal. 2017 Mar;62:33-50.
https://doi.org/10.1111/adj.12479
PMid:28297089
Abdelkarim A. Cone-beam computed tomography in orthodontics. Dentistry journal. 2019 Sep 2;7(3):89.
https://doi.org/10.3390/dj7030089
PMid:31480667 PMCid:PMC6784482
Tymofiyeva O, Proff PC, Rottner K, Düring M, Jakob PM, Richter EJ. Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging. Journal of Oral and Maxillofacial Surgery. 2013 Jul 1;71(7):1159-69.
https://doi.org/10.1016/j.joms.2013.02.014
PMid:23611603
Perry JL, Schleif E, Fang XM, Briley PM, McCarlie Jr VW. Can Velopharyngeal MRI be Used in Individuals with Orthodontic Devices?. The Cleft Palate Craniofacial Journal. 2024 Dec;61(12):2049-60.
https://doi.org/10.1177/10556656231194511
PMid:37554050
Kapetanović A, Oosterkamp BC, Lamberts AA, Schols JG. Orthodontic radiology: development of a clinical practice guideline. La radiologia medica. 2021;126:72-82.
https://doi.org/10.1007/s11547-020-01219-6
PMid:32462471 PMCid:PMC7870627
Trejo-García W, Mendoza-Rodríguez M, Medina-Solís CE, Veras-Hernández MA, Lucas-Rincón SE, Casanova-Rosado JF. Supernumerario invertido en paladar de un infante: reporte de un caso clínico. Pediatría (Asunción). 2018;45(3):237-41.
https://doi.org/10.31698/ped.45032018008
Manosudprasit A, Haghi A, Allareddy V, Masoud MI. Diagnosis and treatment planning of orthodontic patients with 3-dimensional dentofacial records. American Journal of Orthodontics and Dentofacial Orthopedics. 2017;151(6):1083-91.
https://doi.org/10.1016/j.ajodo.2016.10.037
PMid:28554454
Haney E, Gansky SA, Lee JS, Johnson E, Maki K, Miller AJ, et al. Comparative analysis of traditional radiographs and cone-beam computed tomography volumetric images in the diagnosis and treatment planning of maxillary impacted canines. American Journal of Orthodontics and Dentofacial Orthopedics. 2010;137(5):590-7.
https://doi.org/10.1016/j.ajodo.2008.06.035
PMid:20451777
Cordasco G, Portelli M, Militi A, Nucera R, Giudice AL, Gatto E, et al. Low-dose protocol of the spiral CT in orthodontics: comparative evaluation of entrance skin dose with traditional X-ray techniques. Progress in Orthodontics. 2013;14:1-6.
https://doi.org/10.1186/2196-1042-14-24
PMid:24325970 PMCid:PMC4384968
Yeung AW, Jacobs R, Bornstein MM. Novel low-dose protocols using cone beam computed tomography in dental medicine: a review focusing on indications, limitations, and future possibilities. Clinical oral investigations. 2019;23:2573-81.
https://doi.org/10.1007/s00784-019-02907-y
PMid:31025192
Stratis A, Zhang G, Jacobs R, Bogaerts R, Bosmans H. The growing concern of radiation dose in paediatric dental and maxillofacial CBCT: an easy guide for daily practice. European Radiology. 2019;29:7009-18.
https://doi.org/10.1007/s00330-019-06287-5
PMid:31264018
De Felice F, Di Carlo G, Saccucci M, Tombolini V, Polimeni A. Dental cone beam computed tomography in children: clinical effectiveness and cancer risk due to radiation exposure. Oncology. 2019;96(4):173-8.
https://doi.org/10.1159/000497059
PMid:30836369
Lee KS, Nam OH, Kim G-T, Choi SC, Choi Y-S, Hwang E-H. Radiation dosimetry analyses of radiographic imaging systems used for orthodontic treatment: comparison among child, adolescent, and adult patients. Oral radiology. 2021;37:245-50.
https://doi.org/10.1007/s11282-020-00439-w
PMid:32361820
Goren A. Dosimetry Comparison of CBCT versus Digital 2D Orthodontic Imaging in a Pediatric Orthodontic Patient. J Dental Health Oral Res. 2021;2(2):1-28.
Moawad S. Evaluation of the reliability of a practical digital dental X-ray method for the first metacarpophalangeal joint to assist the skeletal age in peripubertal orthodontic period. International Orthodontics. 2019;17(4):701-9.
https://doi.org/10.1016/j.ortho.2019.08.008
PMid:31473153
Russo JM, Russo JA, Guelmann M. Digital radiography: a survey of pediatric dentists. Journal of dentistry for children. 2006;73(3):132-5.
Alqahtani J, Alhemaid G, Alqahtani H, Abughandar A, AlSaadi R, Algarni I, et al. Digital Diagnostics and Orthodontic Practice. J Healthc Sci. 2022;2:112-7.
https://doi.org/10.52533/JOHS.2022.2605
Abdelkarim AA. Appropriate use of ionizing radiation in orthodontic practice and research. American Journal of Orthodontics and Dentofacial Orthopedics. 2015;147(2):166-8.
https://doi.org/10.1016/j.ajodo.2014.11.010
PMid:25636548
Scarfe W, Azevedo B, Toghyani S, Farman A. Cone beam computed tomographic imaging in orthodontics. Australian dental journal. 2017;62:33-50.
https://doi.org/10.1111/adj.12479
PMid:28297089
Lenza M, Lenza MdO, Dalstra M, Melsen B, Cattaneo P. An analysis of different approaches to the assessment of upper airway morphology: a CBCT study. Orthodontics & craniofacial research. 2010;13(2):96-105.
https://doi.org/10.1111/j.1601-6343.2010.01482.x
PMid:20477969
Gurgel ML, Junior CC, Cevidanes LHS, de Barros Silva PG, Carvalho FSR, Kurita LM, et al. Methodological parameters for upper airway assessment by cone-beam computed tomography in adults with obstructive sleep apnea: a systematic review of the literature and meta-analysis. Sleep and Breathing. 2023;27(1):1-30.
https://doi.org/10.1007/s11325-022-02582-6
PMid:35190957 PMCid:PMC9392812
Horner K, O'Malley L, Taylor K, Glenny A-M. Guidelines for clinical use of CBCT: a review. Dentomaxillofacial radiology. 2015;44(1):20140225.
https://doi.org/10.1259/dmfr.20140225
PMid:25270063 PMCid:PMC4277440
Hodges RJ, Atchison KA, White SC. Impact of cone-beam computed tomography on orthodontic diagnosis and treatment planning. American journal of orthodontics and dentofacial orthopedics. 2013;143(5):665-74.
https://doi.org/10.1016/j.ajodo.2012.12.011
PMid:23631968
Theys S, Olszewski R. Cone beam computed tomography (CBCT) in pediatric dentistry. Nemesis Negative Effects in Medical Sciences Oral and Maxillofacial Surgery. 2022;25(1):1-43.
https://doi.org/10.14428/nemesis.v25i1.67713
Tymofiyeva O, Rottner K, Jakob P, Richter E-J, Proff P. Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clinical oral investigations. 2010;14:169-76.
https://doi.org/10.1007/s00784-009-0277-1
PMid:19399539
Tymofiyeva O, Proff PC, Rottner K, Düring M, Jakob PM, Richter E-J. Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging. Journal of Oral and Maxillofacial Surgery. 2013;71(7):1159-69.
https://doi.org/10.1016/j.joms.2013.02.014
PMid:23611603
Patel A, Bhavra G, O'Neill J. MRI scanning and orthodontics. Journal of Orthodontics. 2006;33(4):246-9.
https://doi.org/10.1179/146531205225021726
PMid:17142330
Dobai A, Dembrovszky F, Vízkelety T, Barsi P, Juhász F, Dobó-Nagy C. MRI compatibility of orthodontic brackets and wires: systematic review article. BMC Oral Health. 2022;22(1):298.
https://doi.org/10.1186/s12903-022-02317-9
PMid:35854295 PMCid:PMC9295293
Hasanin M, Kaplan SE, Hohlen B, Lai C, Nagshabandi R, Zhu X, et al. Effects of orthodontic appliances on the diagnostic capability of magnetic resonance imaging in the head and neck region: A systematic review. International Orthodontics. 2019;17(3):403-14.
https://doi.org/10.1016/j.ortho.2019.06.001
PMid:31285157
Aizenbud D, Hazan-Molina H, Einy S, Goldsher D. Craniofacial Magnetic Resonance Imaging With a Gold Solder-Filled Chain-Like Wire Fixed Orthodontic Retainer. Journal of Craniofacial Surgery. 2012;23(6):e654-e7.
https://doi.org/10.1097/SCS.0b013e3182710609
PMid:23172516
Shivam R, Rogers S, Drage N. An Evidence-based Protocol for the Management of Orthodontic Patients Undergoing MRI Scans. Orthodontic Update. 2021;14(1):32-5.
https://doi.org/10.12968/ortu.2021.14.1.32
Mansjur KQ, Nasir M, Paramma ZI, Wahyuni I. Low intensity pulsed ultrasound in orthodontic tooth movement. Makassar Dental Journal. 2021;10(2):159-62.
https://doi.org/10.35856/mdj.v10i2.429
Liu Z, Xu J, E L, Wang D. Ultrasound enhances the healing of orthodontically induced root resorption in rats. The Angle Orthodontist. 2012;82(1):48-55.
https://doi.org/10.2319/030711-164.1
PMid:21787199 PMCid:PMC8881021
Dahhas FY, El-Bialy T, Afify AR, Hassan AH. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats. Ultrasound in medicine & biology. 2016;42(3):808-14.
https://doi.org/10.1016/j.ultrasmedbio.2015.11.018
PMid:26742893
Kaur H, El-Bialy T. Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS). Journal of Clinical Medicine. 2020;9(5):1303.
https://doi.org/10.3390/jcm9051303
PMid:32370099 PMCid:PMC7290339
Raza H, Major P, Dederich D, El-Bialy T. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: a prospective, double-blind, controlled clinical trial. The Angle Orthodontist. 2016;86(4):550-7.
https://doi.org/10.2319/081915-554.1
PMid:26624250 PMCid:PMC8601482
Alshihah N, Alhadlaq A, El-Bialy T, Aldahmash A, Bello IO. The effect of low intensity pulsed ultrasound on dentoalveolar structures during orthodontic force application in diabetic ex-vivo model. Archives of Oral Biology. 2020;119:104883.
https://doi.org/10.1016/j.archoralbio.2020.104883
PMid:32932147
Badiee M, Tehranchi A, Behnia P, Khatibzadeh K. Efficacy of low-intensity pulsed ultrasound for orthodontic pain control: a randomized clinical trial. Frontiers in Dentistry. 2021;18.
https://doi.org/10.18502/fid.v18i38.7607
PMid:35965719 PMCid:PMC9355853
Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs. Ultrasound in medicine & biology. 2014;40(6):1187-96.
https://doi.org/10.1016/j.ultrasmedbio.2013.12.016
PMid:24613212
Wei Y, Guo Y. Clinical applications of low-intensity pulsed ultrasound and its underlying mechanisms in dentistry. Applied Sciences. 2022;12(23):11898.
https://doi.org/10.3390/app122311898
Hwang M, Piskunowicz M, Darge K. Advanced ultrasound techniques for pediatric imaging. Pediatrics. 2019;143(3).
https://doi.org/10.1542/peds.2018-2609
PMid:30808770 PMCid:PMC6398363
Janwadkar R, Leblang S, Ghanouni P, Brenner J, Ragheb J, Hennekens CH, et al. Focused ultrasound for pediatric diseases. Pediatrics. 2022;149(3):e2021052714.
https://doi.org/10.1542/peds.2021-052714
PMid:35229123
Jheon A, Oberoi S, Solem R, Kapila S. Moving towards precision orthodontics: An evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthodontics & craniofacial research. 2017;20:106-13.
https://doi.org/10.1111/ocr.12171
PMid:28643930
Huang T-K, Yang C-H, Hsieh Y-H, Wang J-C, Hung C-C. Augmented reality (AR) and virtual reality (VR) applied in dentistry. The Kaohsiung journal of medical sciences. 2018;34(4):243-8.
https://doi.org/10.1016/j.kjms.2018.01.009
PMid:29655414
Al-Ansi AM, Jaboob M, Garad A, Al-Ansi A. Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences & Humanities Open. 2023;8(1):100532.
https://doi.org/10.1016/j.ssaho.2023.100532
De Grauwe A, Ayaz I, Shujaat S, Dimitrov S, Gbadegbegnon L, Vande Vannet B, et al. CBCT in orthodontics: a systematic review on justification of CBCT in a paediatric population prior to orthodontic treatment. European journal of orthodontics. 2019;41(4):381-9.
https://doi.org/10.1093/ejo/cjy066
PMid:30351398 PMCid:PMC6686083
Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone-beam computed tomography dental measurements. American journal of orthodontics and dentofacial orthopedics. 2009;136(1):19-25.
https://doi.org/10.1016/j.ajodo.2007.09.016
PMid:19577143
Sang Y-H, Hu H-C, Lu S-H, Wu Y-W, Li W-R, Tang Z-H. Accuracy assessment of three-dimensional surface reconstructions of in vivo teeth from cone-beam computed tomography. Chinese medical journal. 2016;129(12):1464-70.
https://doi.org/10.4103/0366-6999.183430
PMid:27270544 PMCid:PMC4910372
Pittayapat P, Limchaichana‐Bolstad N, Willems G, Jacobs R. Three‐dimensional cephalometric analysis in orthodontics: a systematic review. Orthodontics & craniofacial research. 2014;17(2):69-91.
https://doi.org/10.1111/ocr.12034
PMid:24373559
Pojda D, Tomaka AA, Luchowski L, Tarnawski M. Integration and application of multimodal measurement techniques: relevance of photogrammetry to orthodontics. Sensors. 2021;21(23):8026.
https://doi.org/10.3390/s21238026
PMid:34884030 PMCid:PMC8659967
Heil A, Lazo Gonzalez E, Hilgenfeld T, Kickingereder P, Bendszus M, Heiland S, et al. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents. PloS one. 2017;12(3):e0174524.
https://doi.org/10.1371/journal.pone.0174524
PMid:28334054 PMCid:PMC5363936
Ayidh Alqahtani K, Jacobs R, Smolders A, Van Gerven A, Willems H, Shujaat S, et al. Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study. European Journal of Orthodontics. 2023;45(2):169-74.
https://doi.org/10.1093/ejo/cjac047
PMid:36099419
Kim S-H, Choi Y-S, Hwang E-H, Chung K-R, Kook Y-A, Nelson G. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography. American Journal of orthodontics and dentofacial orthopedics. 2007;131(4):S82-S9.
https://doi.org/10.1016/j.ajodo.2006.01.027
PMid:17448391
Horner K, Barry S, Dave M, Dixon C, Littlewood A, Pang CL, et al. Diagnostic efficacy of cone beam computed tomography in paediatric dentistry: a systematic review. European Archives of Paediatric Dentistry. 2020;21:407-26.
https://doi.org/10.1007/s40368-019-00504-x
PMid:31858481 PMCid:PMC7415745
Durão AR, Pittayapat P, Rockenbach MIB, Olszewski R, Ng S, Ferreira AP, et al. Validity of 2D lateral cephalometry in orthodontics: a systematic review. Progress in orthodontics. 2013;14:1-11.
https://doi.org/10.1186/2196-1042-14-31
PMid:24325757 PMCid:PMC3882109
McClure SR, Sadowsky PL, Ferreira A, Jacobson A, editors. Reliability of digital versus conventional cephalometric radiology: a comparative evaluation of landmark identification error. Seminars in Orthodontics; 2005: Elsevier.
https://doi.org/10.1053/j.sodo.2005.04.002
Nakajima A, Sameshima GT, Arai Y, Homme Y, Shimizu N, Dougherty Sr H. Two-and three-dimensional orthodontic imaging using limited cone beam-computed tomography. The Angle Orthodontist. 2005;75(6):895-903.
Jacobs R, Pauwels R, Scarfe WC, De Cock C, Dula K, Willems G, et al. Pediatric cleft palate patients show a 3-to 5-fold increase in cumulative radiation exposure from dental radiology compared with an age-and gender-matched population: a retrospective cohort study. Clinical oral investigations. 2018;22:1783-93.
https://doi.org/10.1007/s00784-017-2274-0
PMid:29188451
Song H. Current global and Korean issues in radiation safety of nuclear medicine procedures. Annals of the ICRP. 2016;45(1_suppl):122-37.
https://doi.org/10.1177/0146645315624048
PMid:26960820
Schaetzing R. Management of pediatric radiation dose using Agfa computed radiography. Pediatric radiology. 2004;34(Suppl 3):S207-S14.
https://doi.org/10.1007/s00247-004-1271-z
PMid:15558263
Pawlowski JM, Ding GX. An algorithm for kilovoltage x-ray dose calculations with applications in kV-CBCT scans and 2D planar projected radiographs. Physics in Medicine & Biology. 2014;59(8):2041.
https://doi.org/10.1088/0031-9155/59/8/2041
PMid:24694756
Aps J. Three-dimensional imaging in paediatric dentistry: a must-have or you're not up-to-date? European Archives of Paediatric Dentistry. 2013;14:129-30.
https://doi.org/10.1007/s40368-013-0034-7
PMid:23609925
Abdelkarim A, Jerrold L. Clinical considerations and potential liability associated with the use of ionizing radiation in orthodontics. American journal of orthodontics and dentofacial orthopedics. 2018;154(1):15-25.
https://doi.org/10.1016/j.ajodo.2018.01.005
PMid:29957313
Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. The journal of the American Dental association. 2008;139(9):1237-43.
https://doi.org/10.14219/jada.archive.2008.0339
PMid:18762634
Caird MS. Radiation safety in pediatric orthopaedics. Journal of Pediatric Orthopaedics. 2015;35:S34-S6.
https://doi.org/10.1097/BPO.0000000000000542
PMid:26049299
Quintero JC, Trosien A, Hatcher D, Kapila S. Craniofacial imaging in orthodontics: historical perspective, current status, and future developments. The Angle Orthodontist. 1999;69(6):491-506.
Francisco I, Ribeiro MP, Marques F, Travassos R, Nunes C, Pereira F, et al. Application of three-dimensional digital technology in orthodontics: the state of the art. Biomimetics. 2022;7(1):23.
https://doi.org/10.3390/biomimetics7010023
PMid:35225915 PMCid:PMC8883890
Shelke DD, Jadhav VV, Jaiswal A, Gandhi V. Review on digital orthodontics. J Pharmaceut Res Int. 2022;34:16-26.
https://doi.org/10.9734/jpri/2022/v34i2B35377
Nc SC, Kalidass DSP, Davis D, Kishore S, Suvetha S. Orthodontics in the Era of Digital Innovation--A Review. Journal of Evolution of Medical and Dental Sciences. 2021;10(28):2114-22.
https://doi.org/10.14260/jemds/2021/432
Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian SR. Machine learning and orthodontics, current trends and the future opportunities: A scoping review. American Journal of Orthodontics and Dentofacial Orthopedics. 2021;160(2):170-92. e4.
https://doi.org/10.1016/j.ajodo.2021.02.013
PMid:34103190
Albalawi F, Alamoud KA. Trends and application of artificial intelligence technology in orthodontic diagnosis and treatment planning-A review. Applied Sciences. 2022;12(22):11864.
https://doi.org/10.3390/app122211864
Kapila S, Vora SR, Rengasamy Venugopalan S, Elnagar MH, Akyalcin S. Connecting the dots towards precision orthodontics. Orthodontics & craniofacial research. 2023;26:8-19.
https://doi.org/10.1111/ocr.12725
PMid:37968678
Rao GKL, Iskandar YHP, Mokhtar N. Enabling training in orthodontics through mobile augmented reality: a novel perspective. Teaching, Learning, and Leading With Computer Simulations: IGI Global; 2020. p. 68-103.
https://doi.org/10.4018/978-1-7998-0004-0.ch003
Joda T, Gallucci G, Wismeijer D, Zitzmann NU. Augmented and virtual reality in dental medicine: A systematic review. Computers in biology and medicine. 2019;108:93-100.
https://doi.org/10.1016/j.compbiomed.2019.03.012
PMid:31003184
Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health. 2019;19:1-8.
https://doi.org/10.1186/s12903-019-0937-8
PMid:31703708 PMCid:PMC6839223
Hansa I, Semaan SJ, Vaid NR, Ferguson DJ, editors. Remote monitoring and "Tele-orthodontics": Concept, scope and applications. Seminars in Orthodontics; 2018: Elsevier.
https://doi.org/10.1053/j.sodo.2018.10.011
Saccomanno S, Quinzi V, Sarhan S, Laganà D, Marzo G. Perspectives of tele-orthodontics in the COVID-19 emergency and as a future tool in daily practice. European journal of paediatric dentistry. 2020;21(2):157-62.
Wafaie K, Rizk MZ, Basyouni ME, Daniel B, Mohammed H. Tele-orthodontics and sensor-based technologies: a systematic review of interventions that monitor and improve compliance of orthodontic patients. European journal of orthodontics. 2023;45(4):450-61.
https://doi.org/10.1093/ejo/cjad004
PMid:37132630
Masood H, Rossouw PE, Barmak AB, Malik S. Tele-orthodontics education model for orthodontic residents: A preliminary study. Journal of Telemedicine and Telecare. 2023:1357633X231174057.
https://doi.org/10.1177/1357633X231174057
PMid:37487203
Kühnisch J, Anttonen V, Duggal M, Spyridonos ML, Rajasekharan S, Sobczak M, et al. Best clinical practice guidance for prescribing dental radiographs in children and adolescents: an EAPD policy document. European Archives of Paediatric Dentistry. 2020;21:375-86.
https://doi.org/10.1007/s40368-019-00493-x
PMid:31768893
Stervik C, Lith A, Westerlund A, Ekestubbe A. Choice of radiography in orthodontic treatment on children and adolescents: A questionnaire‐based study performed in Sweden. European Journal of Oral Sciences. 2021;129(4):e12796.
https://doi.org/10.1111/eos.12796
PMid:34096093
Turpin DL. British Orthodontic Society revises guidelines for clinical radiography. American journal of orthodontics and dentofacial orthopedics. 2008;134(5):597-8.
https://doi.org/10.1016/j.ajodo.2008.09.009
PMid:18984385
Silva MAG, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E. Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. American Journal of Orthodontics and Dentofacial Orthopedics. 2008;133(5):640. e1-. e5.
https://doi.org/10.1016/j.ajodo.2007.11.019
PMid:18456133
Campbell RE, Wilson S, Zhang Y, Scarfe WC. A survey on radiation exposure reduction methods including rectangular collimation for intraoral radiography by pediatric dentists in the United States. The Journal of the American Dental Association. 2020;151(4):287-96.
https://doi.org/10.1016/j.adaj.2020.01.014
PMid:32222177
Pfeifer CM. Promoting imaging appropriateness in pediatric radiology. Pediatric radiology. 2020;50(3):325-6.
https://doi.org/10.1007/s00247-019-04563-6
PMid:32065270
Hua Ch, Vern‐Gross TZ, Hess CB, Olch AJ, Alaei P, Sathiaseelan V, et al. Practice patterns and recommendations for pediatric image‐guided radiotherapy: a Children's Oncology Group report. Pediatric blood & cancer. 2020;67(10):e28629.
https://doi.org/10.1002/pbc.28629
PMid:32776500 PMCid:PMC7774502
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.