In Vitro Comparative Effects of Pulpine Mineral, Pulpine NE, and MTA on the Viability, Proliferation, Migration, and Attachment of Stem Cells from Human Exfoliated Deciduous Teeth

Authors

  • Masumeh Moslemi Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Maryam Torshabi Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Mahta Khosrozamiri Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v13iSP1.3714

Keywords:

Adult Stem Cells; Cell Adhesion; Cell Migration; Cell Survival; Dental Cements

Abstract

Background: This research aimed to evaluate the impact of Pulpine Mineral, Pulpine NE, and mineral trioxide aggregate (MTA) Angelus on crucial cellular functions, including viability, proliferation, attachment, and migration, in stem cells derived from human exfoliated deciduous teeth (SHEDs). Materials and Methods: In this laboratory-based investigation, SHEDs were exposed to 24-hour extracts from Pulpine Mineral, Pulpine NE, and MTA Angelus, prepared in both freshly mixed and fully set forms, over 24 and 72 hours. The methyl thiazolyl tetrazolium (MTT) assay was used to measure cell viability and proliferation, while a scratch test assessed the extent of cell migration. Scanning electron microscopy (SEM) provided insights into how these materials affected cell morphology and attachment. Data analysis was performed using one-way ANOVA and Tukey’s post-hoc test, with statistical significance set at α=0.05. Results: Among the materials tested, MTA resulted in significantly greater cell viability than the other groups (P<0.05). Interestingly, diluted extracts of set Pulpine Mineral showed comparable viability to MTA after 24 hours (P>0.05). In contrast, Pulpine NE yielded the lowest viability scores (P<0.05). For migration, the MTA group achieved complete scratch closure within 48 hours, whereas Pulpine Mineral facilitated partial migration but did not close the scratch entirely. Cells in the Pulpine NE group exhibited neither proliferation nor migration, as they were entirely non-viable. Conclusion: Pulpine Mineral showed superior biological effects compared to Pulpine NE; however, both Pulpine materials exhibited inferior results compared to MTA Angelus.

References

Duncan HF. Present status and future directions-Vital pulp treatment and pulp preservation strategies. Int Endod J. 2022;55:497-511.

https://doi.org/10.1111/iej.13688

PMid:35080024 PMCid:PMC9306596

Hanna SN, Alfayate RP, Prichard J. Vital pulp therapy an insight over the available literature and future expectations. Eur Endod J. 2020;5(1):46-53.

Sabeti M, Huang Y, Chung YJ, Azarpazhooh A. Prognosis of vital pulp therapy on permanent dentition: a systematic review and meta-analysis of randomized controlled trials. J Endod. 2021;47(11):1683-95.

https://doi.org/10.1016/j.joen.2021.08.008

PMid:34478787

Leong DJX, Yap AU. Vital pulp therapy in carious pulp-exposed permanent teeth: an umbrella review. Clin Oral Investig. 2021;25(12):6743-56.

https://doi.org/10.1007/s00784-021-03960-2

PMid:33970319

Santos JM, Pereira JF, Marques A, Sequeira DB, Friedman S. Vital pulp therapy in permanent mature posterior teeth with symptomatic irreversible pulpitis: a systematic review of treatment outcomes. Med. 2021;57(6):573.

https://doi.org/10.3390/medicina57060573

PMid:34205149 PMCid:PMC8228104

Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B. Cytotoxicity and bioactivity of dental pulp-capping agents towards human tooth-pulp cells: a systematic review of in-vitro studies and meta-analysis of randomized and controlled clinical trials. Mater. 2020;13(12):2670.

https://doi.org/10.3390/ma13122670

PMid:32545425 PMCid:PMC7345102

Rodríguez-Lozano F, Lozano A, López-García S, García-Bernal D, Sanz J, Guerrero-Gironés J et al. Biomineralization potential and biological properties of a new tantalum oxide (Ta 2 O 5)-containing calcium silicate cement. Clin Oral Investig. 2022;26(2):1427-41.

https://doi.org/10.1007/s00784-021-04117-x

PMid:34382106 PMCid:PMC8816786

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36(3):400-13.

https://doi.org/10.1016/j.joen.2009.09.009

PMid:20171353

Camilleri J. Modification of mineral trioxide aggregate Physical and mechanical properties. Int Endod J. 2008;41(10):843-9.

https://doi.org/10.1111/j.1365-2591.2008.01435.x

PMid:18699790

Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res. 2001;15(7):561-71.

https://doi.org/10.1002/ptr.1029

PMid:11746834

Burdock G. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol. 1998;36(4):347-63.

https://doi.org/10.1016/S0278-6915(97)00145-2

PMid:9651052

Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995;26(2):83-99.

https://doi.org/10.1051/apido:19950202

Al‐Haj Ali SN. In vitro toxicity of propolis in comparison with other primary teeth pulpotomy agents on human fibroblasts. J investig clin dent. 2016;7(3):308-13.

https://doi.org/10.1111/jicd.12157

PMid:25917461

Ozório JEV, de Oliveira DA, de Sousa-Neto MD, Perez DEdC. Standardized propolis extract and calcium hydroxide as pulpotomy agents in primary pig teeth. J Dent Child. 2012;79(2):53-8.

Parolia A, Kundabala M, Rao N, Acharya S, Agrawal P, Mohan M et al. A comparative histological analysis of human pulp following direct pulp capping with Propolis, mineral trioxide aggregate and Dycal. Aust Dent J. 2010;55(1):59-64.

https://doi.org/10.1111/j.1834-7819.2009.01179.x

PMid:20415913

Mohamed M, Hashem AAR, Obeid MF, Abu-Seida A. Histopathological and immunohistochemical profiles of pulp tissues in immature dogs' teeth to two recently introduced pulpotomy materials. Clin Oral Investig. 2023;27(6):3095-103.

https://doi.org/10.1007/s00784-023-04915-5

PMid:36781475 PMCid:PMC10264498

Bhandary M, Rao S, Shetty AV, Kumar BM, Hegde AM, Chhabra R. Comparison of stem cells from human exfoliated deciduous posterior teeth with varying levels of root resorption. Stem Cell Investig. 2021;8:15.

https://doi.org/10.21037/sci-2020-039

PMid:34527730 PMCid:PMC8413134

Standard I. Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. Geneve, Switzerland: International Organization for Standardization; 2009.

Ghoddusi J, Afshari JT, Donyavi Z, Brook A, Disfani R, Esmaeelzadeh M. Cytotoxic effect of a new endodontic cement and mineral trioxide aggregate on L929 line culture. Iran Endod J. 2008;3(2):17.

Torshabi M, Amid R, Kadkhodazadeh M, Shahrbabaki SE, Tabatabaei FS. Cytotoxicity of two available mineral trioxide aggregate cements and a new formulation on human gingival fibroblasts. J Conserv Dent. 2016;19(6):522-6.

https://doi.org/10.4103/0972-0707.194033

PMid:27994312 PMCid:PMC5146766

Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR. The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J. 2005;38(11):834-42.

https://doi.org/10.1111/j.1365-2591.2005.01028.x

PMid:16218977

Saidon J, He J, Zhu Q, Safavi K, Spångberg LS. Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(4):483-9.

https://doi.org/10.1067/moe.2003.20

PMid:12686935

Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater J. 2008;24(2):149-64.

https://doi.org/10.1016/j.dental.2007.04.007

PMid:17586038

Perinpanayagam H. Cellular response to mineral trioxide aggregate root-end filling materials. J Can Dent Assoc. 2009;75(5):369-72.

Nie E, Yu J, Jiang R, Liu X, Li X, Islam R et al. Effectiveness of direct pulp capping bioactive materials in dentin regeneration: a systematic review. Mater. 2021;14(22):6811.

https://doi.org/10.3390/ma14226811

PMid:34832214 PMCid:PMC8621741

Rodrigues EM, Cornélio ALG, Mestieri LB, Fuentes ASC, Salles LP, Rossa‐Junior C et al. Human dental pulp cells response to mineral trioxide aggregate (MTA) and MTA Plus: cytotoxicity and gene expression analysis. Int Endod J. 2017;50(8):780-9.

https://doi.org/10.1111/iej.12683

PMid:27520288

Benetti F, Queiroz ÍODA, Cosme-Silva L, Conti LC, Oliveira SHPD, Cintra LTA. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Braz Dent J. 2019;30:325-32.

https://doi.org/10.1590/0103-6440201902457

PMid:31340221

Cintra LTA, Benetti F, de Azevedo Queiroz ÍO, de Araújo Lopes JM, de Oliveira SHP, Araújo GS et al. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. J Endod. 2017;43(5):774-8.

https://doi.org/10.1016/j.joen.2016.12.018

PMid:28320539

Sequeira DB, Seabra CM, Palma PJ, Cardoso AL, Peça J, Santos JM. Effects of a new bioceramic material on human apical papilla cells. J Funct Biomater. 2018;9(4):74.

https://doi.org/10.3390/jfb9040074

PMid:30558359 PMCid:PMC6306901

Paula A, Laranjo M, Marto CM, Abrantes AM, Casalta-Lopes J, Gonçalves AC et al. Biodentine™ boosts, WhiteProRoot® MTA increases and Life® suppresses odontoblast activity. Mater. 2019;12(7):1184.

https://doi.org/10.3390/ma12071184

PMid:30978943 PMCid:PMC6479701

Fung CS, Mohamad H, Hashim SNM, Htun AT, Ahmad A. Proliferative effect of Malaysian propolis on stem cells from human exfoliated deciduous teeth: an in vitro study. Br J Pharm Res. 2015;8(1):1-8.

https://doi.org/10.9734/BJPR/2015/19918

Ahangari Z, Alborzi S, Yadegari Z, Dehghani F, Ahangari L, Naseri M. The effect of propolis as a biological storage media on periodontal ligament cell survival in an avulsed tooth: an in vitro study. Cell J. 2013;15(3):244-9.

Markham KR, Mitchell KA, Wilkins AL, Daldy JA, Lu Y. HPLC and GC-MS identification of the major organic constituents in New Zeland propolis. Phytochem. 1996;42(1):205-11.

https://doi.org/10.1016/0031-9422(96)83286-9

Scatolini AM, Pugine SMP, de Oliveira Vercik LC, De Melo MP, da Silva Rigo EC. Evaluation of the antimicrobial activity and cytotoxic effect of hydroxyapatite containing Brazilian propolis. Biomed Mater. 2018;13(2):025010.

https://doi.org/10.1088/1748-605X/aa9a84

PMid:29135460

Santos NC, Ramos ME, Ramos AF, Cerqueira AB, Cerqueira EM. Evaluation of the genotoxicity and cytotoxicity of filling pastes used for pulp therapy on deciduous teeth using the micronucleus test on bone marrow from mice (Mus musculus). Mutagenesis. 2016;31(5):589-95.

https://doi.org/10.1093/mutage/gew026

PMid:27251419

Ferracane JL, Cooper PR, Smith AJ. Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration? Odontology. 2010;98(1):2-14.

https://doi.org/10.1007/s10266-009-0116-5

PMid:20155502

Bastawy HA, Niazy MA, Farid MH, Harhash AY, ABU-SIEDA AM. Histological evaluation of pulp response to Pulpine NE versus Biodentine as direct pulp capping materials in a dog model. Int Arab j dent. 2024;15(1):106-19.

https://doi.org/10.70174/iajd.v15i1.964

Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview-part I: vital pulp therapy. Int Endod J. 2018;51(2):177-205.

https://doi.org/10.1111/iej.12841

PMid:28836288

About I. Biodentine: from biochemical and bioactive properties to clinical applications. G Ital Endod. 2016;30(2):81-8.

https://doi.org/10.1016/j.gien.2016.09.002

Lutfi AN, Kannan TP, Fazliah MN, Jamaruddin MA, Saidi J. Proliferative activity of cells from remaining dental pulp in response to treatment with dental materials. Aust Dent J. 2010;55(1):79-85.

https://doi.org/10.1111/j.1834-7819.2009.01185.x

PMid:20415916

Rennert RC, Sorkin M, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenerative medicine. Regen Med. 2012;7(6):833-50.

https://doi.org/10.2217/rme.12.82

PMid:23164083 PMCid:PMC3568672

Collado‐González M, García‐Bernal D, Oñate‐Sánchez RE, Ortolani‐Seltenerich PS, Álvarez‐Muro T, Lozano A et al. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J. 2017;50:e19-e30.

https://doi.org/10.1111/iej.12751

Zhang J, Zhu LX, Cheng X, Lin Y, Yan P, Peng B. Promotion of dental pulp cell migration and pulp repair by a bioceramic putty involving FGFR-mediated signaling pathways. J Dent Res. 2015;94(6):853-62.

https://doi.org/10.1177/0022034515572020

PMid:25724555

Lv F, Zhu L, Zhang J, Yu J, Cheng X, Peng B. Evaluation of the in vitro biocompatibility of a new fast‐setting ready‐to‐use root filling and repair material. Int Endod J. 2017;50(6):540-8.

https://doi.org/10.1111/iej.12661

PMid:27214303

Zhu L, Yang J, Zhang J, Peng B. A comparative study of BioAggregate and ProRoot MTA on adhesion, migration, and attachment of human dental pulp cells. J Endod. 2014;40(8):1118-23.

https://doi.org/10.1016/j.joen.2013.12.028

PMid:25069918

Akbulut MB, Uyar Arpaci P, Unverdi Eldeniz A. Effects of novel root repair materials on attachment and morphological behaviour of periodontal ligament fibroblasts: Scanning electron microscopy observation. Microsc Res Tech. 2016;79(12):1214-21.

https://doi.org/10.1002/jemt.22780

PMid:27647819

Widjiastuti I, Dewi MK, Prasetyo EA, Pribadi N, Moedjiono M. The cytotoxicity test of calcium hydroxide, propolis, and calcium hydroxide-propolis combination in human pulp fibroblast. J adv pharm technol res. 2020;11(1):20-4.

https://doi.org/10.4103/japtr.JAPTR_88_19

PMid:32154154 PMCid:PMC7034179

Downloads

Published

2024-12-31

How to Cite

Moslemi , M., Torshabi , M., & Khosrozamiri, M. (2024). In Vitro Comparative Effects of Pulpine Mineral, Pulpine NE, and MTA on the Viability, Proliferation, Migration, and Attachment of Stem Cells from Human Exfoliated Deciduous Teeth. Galen Medical Journal, 13(SP1), e3714. https://doi.org/10.31661/gmj.v13iSP1.3714