Radiographic Evaluation of Implant Stability and Osseointegration in Adult Orthodontic Patients

Authors

  • Sajjad Rostamzadeh Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
  • Mohammad Ghasemirad Department of Periodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
  • Mohammad Gerayeli Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
  • Mina Abasi School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  • Mohsen Pouresmaeliyan Roumani Private Dental Clinic, Shahrebabak ,Kerman, Iran
  • Shabnam Ganjehzadeh Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
  • Amirmohammad Moharrami Department Of Orthodontics, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v14i.3799

Keywords:

Implant Stability; Osseointegration, CBCT; Orthodontic Mini-Implants; Temporary Anchorage Devices (Tads); Artificial Intelligence; Peri-Implant Bone Loss

Abstract

Radiographic evaluation is essential for assessing implant stability and osseointegration in adult orthodontic patients. The success of temporary anchorage devices (TADs) and mini-implants depends on primary stability, achieved through mechanical engagement, and secondary stability, influenced by bone remodeling. While traditional clinical methods, such as mobility testing, provide subjective assessments, radiographic imaging offers objective insights into bone-implant interactions. Periapical and panoramic radiographs are commonly used but are limited by their two-dimensional (2D) nature. Cone beam computed tomography (CBCT) has emerged as the gold standard, providing three-dimensional (3D) visualization of cortical bone thickness, marginal bone loss, and peri-implant adaptations. However, challenges such as image artifacts, radiation exposure, and observer variability persist. Implant stability is influenced by factors like bone density, cortical thickness, insertion torque, and patient-specific variables, including systemic conditions, genetic predisposition, and lifestyle habits. Emerging techniques such as resonance frequency analysis (RFA) complement radiographic findings by providing quantitative stability assessments. Additionally, artificial intelligence (AI)-driven radiographic analysis is improving diagnostic accuracy, automating bone density evaluation, and predicting implant success. Future advancements in low-dose CBCT protocols, AI-assisted diagnostics, and digital treatment planning aim to optimize implant placement and long-term stability assessment. By integrating multimodal imaging approaches with biomechanical and AI-driven predictive modeling, clinicians can enhance treatment planning, reduce implant failure rates, and improve orthodontic outcomes. This review underscores the importance of advanced imaging techniques in implant stability assessment and highlights the need for continued research in AI-driven diagnostics and minimally invasive evaluation methods.

References

Hristov IG. IMPLANT DESIGN FACTORS THAT AFFECT PRIMARY STABILITY AND OSSEOINTEGRATION. Восточно-Европейский Научный Журнал. 2022;1(77):60-5.

https://doi.org/10.31618/ESSA.2782-1994.2022.3.77.249

Suzuki S, Kobayashi H, Ogawa T. Implant stability change and osseointegration speed of immediately loaded photofunctionalized implants. Implant Dentistry. 2013; 22:481-90.

https://doi.org/10.1097/ID.0b013e31829deb62

PMid:24021973

Kumar GK, Priya S, Arunmozhi U, Kadhiresan R, Cynthia JRA. Primary implant stability: A leap towards successful osseointegration - A narrative review. Journal of Indian Dental Association Madras. 2021;8:158-65.

https://doi.org/10.37841/jidam_2021_V8_I4_03

Goharian A. Osseointegration of Orthopaedic Implants [Internet]. Cambridge: Academic Press; 2019 [cited 2025 Mar 6]. Available from: https://books.google.co.uk/books?

Kittur N, Oak R, Dekate D, Jadhav S, Dhatrak P. Dental implant stability and its measurements to improve osseointegration at the bone-implant interface: A review. Vol. 43, Materials Today: Proceedings. 2021. p. 1064-70.

https://doi.org/10.1016/j.matpr.2020.08.243

Tabassum S, Murtaza A, Ali H, Uddin ZM, Zehra SS. Finite element analysis (FEA) of dental implant fixture for mechanical stability and rapid osseointegration. AIP Conference Proceedings. 2017; 18922:040016.

https://doi.org/10.1063/1.5008042

Stocchero M. On Influence Of Undersized Implant Site On Implant Stability And Osseointegration [Internet]. [Sweden]: Malmö University; 2018 [cited 2025 Mar 6]. Available from: https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-7675

Anil S, Anand PS, Alghamdi H, Jansen JA. Dental implant surface enhancement and osseointegration. Implant dentistry-a rapidly evolving practice. 2011 Aug 29;2011:82-108.

https://doi.org/10.5772/16475

Cui X, Reason T, Pardi V, Wu Q, Martinez Luna AA. CBCT analysis of crestal soft tissue thickness before implant placement and its relationship with cortical bone thickness. BMC Oral Health. 2022 Dec 10;22(1):593.

https://doi.org/10.1186/s12903-022-02629-w

PMid:36496410 PMCid:PMC9741784

Abdelatef M, Fahmy M, Ahmed G. Efficiency of concentrated growth factors on immediate implant stability and osseointegration in the posterior mandible (Randomized Controlled Clinical Trial). Alexandria Dental Journal. 2024;x :1-8.

https://doi.org/10.21608/adjalexu.2023.187376.1339

Kheder D, Hayder A. Evaluation of osseointegration of dental implant with and without primary stability: An experimental study on sheep. Erbil Dental Journal. 2019; 2:197-204.

https://doi.org/10.15218/edj.2019.10

Monje A, Roccuzzo A, Buser D, Wang HL. Influence of buccal bone wall thickness on the peri-implant hard and soft tissue dimensional changes. A systematic review. 2023;34: 8-27.

https://doi.org/10.1111/clr.14177

PMid:37750522

Uemura M, Motoyoshi M, Yano S, Sakaguchi M, Igarashi Y, Shimizu N. Orthodontic mini-implant stability and the ratio of pilot hole implant diameter. The European Journal of Orthodontics. 2012;34: 52-6.

https://doi.org/10.1093/ejo/cjq157

PMid:21393374

Kim J, et al. Primary stability and osseointegration of orthodontic mini-implants. American Journal of Orthodontics and Dentofacial Orthopedics. 2005;128:190-5.

https://doi.org/10.1016/j.ajodo.2004.01.030

PMid:16102403

Miyawaki S, et al. Factors influencing stability of orthodontic mini-implants. American Journal of Orthodontics and Dentofacial Orthopedics. 2003;124: 373-8.

https://doi.org/10.1016/S0889-5406(03)00565-1

PMid:14560266

Greenstein G, Cavallaro J. Implant Insertion Torque: Its Role in Achieving Primary Stability of Restorable Dental Implants. Compend Contin Educ Dent. 2017;38 2:88-95.

Dkheel IA, Al-Quisi A, AlOtaibi NM. The reliability of insertion torque as an indicator for primary stability in immediate dental implant: A prospective clinical study. J Baghdad Coll Dent. 2024;36(3):1817-69.

https://doi.org/10.26477/jbcd.v36i3.3735

Barone A, Alfonsi F, Derchi G, Tonelli P, Toti P, Marchionni S, et al. The Effect of Insertion Torque on the Clinical Outcome of Single Implants: A Randomized Clinical Trial. Clin Implant Dent Relat Res. 2016;18 3:588-600.

https://doi.org/10.1111/cid.12337

PMid:26043651

Soto-Peñaloza D, Martín-de-Llano JJ, Carda-Batalla C, Peñarrocha-Diago M, Peñarrocha-Oltra D. Basic Bone Biology Healing During Osseointegration of Titanium Dental Implants. Atlas of Immediate Dental Implant Loading. 2019:17-28.

https://doi.org/10.1007/978-3-030-05546-2_2

Upadhyay MA, Nanda RA. Biomechanics principles in mini-implant driven orthodontics Temporary Anchorage Devices in Orthodontics (Second Edition). St Louis Elsevier. 2020:3-20.

https://doi.org/10.1016/B978-0-323-60933-3.00001-6

Vladareanu L, Capitanu L. Hybrid force-position systems with vibration control for improvement of hip implant stability. Journal of Biomechanics. 2012;45: S279.

https://doi.org/10.1016/S0021-9290(12)70280-4

Upadhyay M, Yadav S, Nagaraj K, Patil S. Treatment effects of mini-implants for en-masse retraction of anterior teeth in bialveolar dental protrusion patients: A randomized controlled trial. American Journal of Orthodontics and Dentofacial Orthopedics. 2008;134:18-29.

https://doi.org/10.1016/j.ajodo.2007.03.025

PMid:18617099

De Elío Oliveros J, Del Canto Díaz A, Del Canto Díaz M, Orea CJ, Del Canto Pingarrón M, Calvo JS. Alveolar Bone Density and Width Affect Primary Implant Stability. J Oral Implantol. 2020 Aug 1;46(4):389-95.

https://doi.org/10.1563/aaid-joi-D-19-00028

PMid:32221558

Al-Juboori H, Petronis Z, Razukevicius D. The Interrelation between Cortical Bone Thickness and Primary and Secondary Dental Implant Stability: a Systematic Review. J Oral Maxillofac Res. 2024 Dec 31;15(4):e2.

https://doi.org/10.5037/jomr.2024.15402

PMid:40017687 PMCid:PMC11863651

Lee DW, Park JH, Bay RC, Choi SK, Chae JM. Cortical bone thickness and bone density effects on miniscrew success rates: A systematic review and meta-analysis. Orthod Craniofac Res. 2021 Mar;24 Suppl 1:92-102.

https://doi.org/10.1111/ocr.12453

PMid:33277824

Fernández-Olavarria A, Gutiérrez-Corrales A, González-Martín M, Torres-Lagares D, Torres-Carranza E, Serrera-Figallo MÁ. Influence of different drilling protocols and bone density on the insertion torque of dental implants. Medicina Oral, Patología Oral y Cirugía Bucal. 2023 Jun 18;28(4):e385.

https://doi.org/10.4317/medoral.25804

PMid:37330951 PMCid:PMC10314359

Truong VM, Kim S, Kim J, Lee JW, Park YS. Revisiting the Complications of Orthodontic Miniscrew. BioMed Res Int. 2022 Aug 1;2022:8720412.

https://doi.org/10.1155/2022/8720412

PMid:35958810 PMCid:PMC9359838

Nandini N, Kunusoth R, Alwala AM, Prakash R, Sampreethi S, Katkuri S. Cylindrical Implant Versus Tapered Implant: A Comparative Study. Cureus. 2022 Sep;14(9):e29675.

https://doi.org/10.7759/cureus.29675

Romero-Serrano M, Romero-Ruiz MM, Herrero-Climent M, Rios-Carrasco B, Gil-Mur J. Correlation between Implant Surface Roughness and Implant Stability: A Systematic Review. Dent J. 2024 Aug 23;12(9):276.

https://doi.org/10.3390/dj12090276

PMid:39329842 PMCid:PMC11430827

Quispe-López N, Martín-Martín S, Gómez-Polo C, Figueras-Alvarez O, Sánchez-Jorge MI, Montero J. Primary and Secondary Stability Assessments of Dental Implants According to Their Macro-Design, Length, Width, Location, and Bone Quality. Appl Sci. 2024 Jan;14(11):4841.

https://doi.org/10.3390/app14114841

Eini E, Yousefimanesh H, Ashtiani AH, Saki-Malehi A, Olapour A, Rahim F. Comparing success of immediate versus delay loading of implants in fresh sockets: a systematic review and meta-analysis. Oral Maxillofac Surg. 2022 Jun;26(2):185-94.

https://doi.org/10.1007/s10006-021-00983-7

PMid:34251545

Maino BG, Di Blasio A, Spadoni D, Ravanetti F, Galli C, Cacchioli A, et al. The integration of orthodontic miniscrews under mechanical loading: a pre-clinical study in rabbit. Eur J Orthod. 2017 Oct;39(5):519-27.

https://doi.org/10.1093/ejo/cjw069

PMid:28339580

Jensen SW, Jensen ED, Sampson W, Dreyer C. Torque Requirements and the Influence of Pilot Holes on Orthodontic Miniscrew Microdamage. Appl Sci. 2021 Apr 15;11(8):3564.

https://doi.org/10.3390/app11083564

Azmi FNAM, Ying LS, Mohamed WAB, Hassan R. Temporary Anchorage Device Stability. Monocortical Versus Bicortical Anchorage Technique: UI Proc Health Med [Internet] 2017 Jan 3 [cited 2025 May 8]; Available from: http://proceedings.ui.ac.id/index.php/uiphm/article/view/44

https://doi.org/10.7454/uiphm.v1i0.44

McManus MM, Qian F, Grosland NM, Marshall SD, Southard TE. Effect of miniscrew placement torque on resistance to miniscrew movement under load. Am J Orthod Dentofacial Orthop. 2011 Sep;140(3):e93-8.

https://doi.org/10.1016/j.ajodo.2011.04.017

PMid:21889062

Chen JC, Ko CL, Lin DJ, Wu HY, Hung CC, Chen WC. In vivo studies of titanium implant surface treatment by sandblasted, acid-etched and further anchored with ceramic of tetracalcium phosphate on osseointegration. J Aust Ceram Soc. 2019 Sep;55(3):799-806.

https://doi.org/10.1007/s41779-018-00292-5

Wagner J, Spille JH, Wiltfang J, Naujokat H. Systematic review on diabetes mellitus and dental implants: an update. Int J Implant Dent. 2022 Jan 3;8(1):1.

https://doi.org/10.1186/s40729-021-00399-8

PMid:34978649 PMCid:PMC8724342

Sachelarie L, Scrobota I, Cioara F, Ghitea TC, Stefanescu CL, Todor L, et al. The Influence of Osteoporosis and Diabetes on Dental Implant Stability: A Pilot Study. Medicina (Mex). 2025 Jan;61(1):74.

https://doi.org/10.3390/medicina61010074

PMid:39859055 PMCid:PMC11766711

Domingue D, Sinada N, White JR. Digital surgical planning and placement of osseointegrated implants to retain an auricular prosthesis using implant software with cone-beam computed tomography and 3D-printed surgical guides: A case report. Clin Case Rep. 2021 Jan;9(1):203-9.

https://doi.org/10.1002/ccr3.3499

PMid:33489160 PMCid:PMC7813009

Putra RH, Cooray U, Nurrachman AS, Yoda N, Judge R, Putri DK, et al. Radiographic alveolar bone assessment in correlation with primary implant stability. A systematic review and meta-analysis: Clin Oral Implants Res [Internet] 2023; Available from: https://api.semanticscholar.org/CorpusID:264143827

https://doi.org/10.1111/clr.14195

PMid:37840388

Zumstein T, Sennerby L. A 1-Year Clinical and Radiographic Study on Hydrophilic Dental Implants Placed with and without Bone Augmentation Procedures. Clin Implant Dent Relat Res. 2016 Jun;18(3):498-506.

https://doi.org/10.1111/cid.12329

PMid:26278780

Kulczyk T, Czajka-Jakubowska A, Przystańska A. A Comparison between the Implant Stability Quotient and the Fractal Dimension of Alveolar Bone at the Implant Site. BioMed Res Int. 2018 Oct 15;2018:1-7.

https://doi.org/10.1155/2018/4357627

PMid:30410933 PMCid:PMC6205094

Singh N, Rajesh N, Ramesh A. Assessment of implant stability with resonance frequency analysis and changes in the thickness of keratinized tissue and crestal bone level using cone-beam computed tomography in two-stage implants: A three-dimensional clinicoradiographic study. J Indian Soc Periodontol. 2024 May;28(3):368-75.

https://doi.org/10.4103/jisp.jisp_122_23

PMid:39742066 PMCid:PMC11684576

Antony DP, Thomas T, Nivedhitha M. Two-dimensional Periapical, Panoramic Radiography Versus Three-dimensional Cone-beam Computed Tomography in the Detection of Periapical Lesion After Endodontic Treatment. A Systematic Review: Cureus [Internet] 2020 Apr 19 [cited 2025 May 7]; Available from: https://www.cureus.com/articles/28453-two-dimensional-periapical-panoramic-radiography-versus-three-dimensional-cone-beam-computed-tomography-in-the-detection-of-periapical-lesion-after-endodontic-treatment-a-systematic-review

https://doi.org/10.7759/cureus.7736

Ozarslanturk S, Ozturk HP, Senel B, Avsever H, Ozen T. What Surprises Lie Beneath a Panoramic Radiograph in Dental Implant Planning. Dent Adv Res [Internet]: 2018 Feb 27 [cited 2025 May 7]; Available from: https://www.gavinpublishers.com/articles/Case-Report/Dentistry-Advanced-Research-ISSN-2574-7347/What-Surprises-Lie-Beneath-a-Panoramic-Radiograph-in-Dental-Implant-Planning

https://doi.org/10.29011/2574-7347.100048

Chopra A, Singh R, Thukral R, Mittal A. Cone-beam computed tomography in implant dentistry: Radiation dose, field of view, and use guidelines. Imaging Sci Dent. 2021;51(4):506-14.

Song D, Shujaat S, de Faria Vasconcelos K, Huang Y, Politis C, Lambrichts I, et al. Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects. BMC Med Imaging. 2021 Feb 10;21(1):23.

https://doi.org/10.1186/s12880-021-00557-9

PMid:33568085 PMCid:PMC7877020

Arisan V, Karabuda ZC, Avsever H, Özdemir T. Conventional Multi-Slice Computed Tomography (CT) and Cone-Beam CT (CBCT) for Computer-Assisted Implant Placement Part I: Relationship of Radiographic Gray Density and Implant Stability. Clin Implant Dent Relat Res. 2013 Dec;15(6):893-906.

https://doi.org/10.1111/j.1708-8208.2011.00436.x

PMid:22251553

Bornstein MM, Horner K, Jacobs R. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research. Periodontol 2000. 2017 Feb;73(1):51-72.

https://doi.org/10.1111/prd.12161

PMid:28000270

Vasoglou G, Stefanidaki I, Apostolopoulos K, Fotakidou E, Vasoglou M. Accuracy of Mini-Implant Placement Using a Computer-Aided Designed Surgical Guide, with Information of Intraoral Scan and the Use of a Cone-Beam CT. Dent J. 2022 Jun 8;10(6):104.

https://doi.org/10.3390/dj10060104

PMid:35735647 PMCid:PMC9221763

Miotk N, Schwindling FS, Zidan M, Juerchott A, Rammelsberg P, Hosseini Z, et al. Reliability and accuracy of intraoral radiography, cone beam CT, and dental MRI for evaluation of peri-implant bone lesions at zirconia implants − an ex vivo feasibility study. J Dent. 2023 Mar;130:104422.

https://doi.org/10.1016/j.jdent.2023.104422

PMid:36649822

Van Dessel J, Nicolielo LFP, Huang Y, Slagmolen P, Politis C, Lambrichts I, et al. Quantification of bone quality using different cone beam computed tomography devices: Accuracy assessment for edentulous human mandibles. Eur J Oral Implantol. 2016;9(4):411-24.

Neldam CA, Lauridsen T, Rack A, Lefolii TT, Jørgensen NR, Feidenhans'l R, et al. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration. J Cranio-Maxillofac Surg. 2015 Jun;43(5):682-7.

https://doi.org/10.1016/j.jcms.2015.03.012

PMid:25957106

Kaaber L, Matzen LH, Schropp L, Spin-Neto R. Low-dose CBCT protocols in implant dentistry: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Sep;138(3):427-39.

https://doi.org/10.1016/j.oooo.2024.03.013

PMid:38679501

Dos Santos Corpas L, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri-implant bone tissue assessment by comparing the outcome of intra-oral radiograph and cone beam computed tomography analyses to the histological standard: Peri-implant bone tissue assessment. Clin Oral Implants Res. 2011 May;22(5):492-9.

https://doi.org/10.1111/j.1600-0501.2010.02029.x

PMid:21143531

Commission E, Energy DG for. Cone beam CT for dental and maxillofacial radiology - Evidence-based guidelines. Publications: Office; 2012.

Centeno ACT, Fensterseifer CK, Chami VDO, Ferreira ES, Marquezan M, Ferrazzo VA. Correlation between cortical bone thickness at mini-implant insertion sites and age of patient. Dent Press J Orthod. 2022;27(1):e222098.

https://doi.org/10.1590/2177-6709.27.1.e222098.oar

PMid:35239944 PMCid:PMC8896745

Uday N, Prashanth KP, Kumar A. CBCT evaluation of interdental cortical bone thickness at common orthodontic miniscrew implant placement sites. Int J Appl Dent Sci. 2017;3:35-41.

Kalra S, Tripathi T, Rai P, Kanase A. Evaluation of orthodontic mini-implant placement: a CBCT study. Prog Orthod. 2014 Dec;15(1):61.

https://doi.org/10.1186/s40510-014-0061-x

PMid:25406652 PMCid:PMC4234895

Becker K, Unland J, Wilmes B, Tarraf NE, Drescher D. Is there an ideal insertion angle and position for orthodontic mini-implants in the anterior palate A CBCT study in humans. Am J Orthod Dentofacial Orthop. 2019 Sep;156(3):345-54.

https://doi.org/10.1016/j.ajodo.2018.09.019

PMid:31474264

Hung KF, Ai QYH, Wong LM, Yeung AWK, Li DTS, Leung YY. Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases. Diagnostics. 2023 Jan;13(1):110.

https://doi.org/10.3390/diagnostics13010110

PMid:36611402 PMCid:PMC9818323

Mugri MH. Accuracy of Artificial Intelligence Models in Detecting Peri-Implant Bone Loss: A Systematic Review. Diagnostics. 2025 Mar 7;15(6):655.

https://doi.org/10.3390/diagnostics15060655

PMid:40149998 PMCid:PMC11941572

Rezallah NNF, Luke AM. Evaluating Micro-computed Tomography in Dental Implant Osseointegration: A Systematic Review and Meta-analysis. Acad Radiol. 2025 Feb;32(2):1086-99.

https://doi.org/10.1016/j.acra.2024.09.011

PMid:39368915

Goswami T. Injury and Skeletal Biomechanics. BoD: Books on Demand; 2012.

https://doi.org/10.5772/2766

Setiawan K, Primarti RS, Sitam S, Suridwan W, Usri K, Latief FDE. Microstructural Evaluation of Dental Implant Success Using Micro-CT: A Comprehensive Review. Appl Sci. 2024 Nov 27;14(23):11016.

https://doi.org/10.3390/app142311016

Galletti F, D'Angelo T, Fiorillo L, Lo Giudice P, Irrera N, Rizzo G, et al. Micro-CT Structure Analysis on Dental Implants: Preliminary In Vitro Trial. Prosthesis. 2024 Nov 29;6(6):1437-47.

https://doi.org/10.3390/prosthesis6060104

Sotova C, Yanushevich O, Kriheli N, Grigoriev S, Evdokimov V, Kramar O, et al. Dental Implants: Modern Materials and Methods of Their Surface Modification. Materials. 2023 Nov 27;16(23):7383.

https://doi.org/10.3390/ma16237383

PMid:38068127 PMCid:PMC10707035

Putri A, Pramanik F, Azhari A. Micro Computed Tomography and Immunohistochemistry Analysis of Dental Implant Osseointegration in Animal Experimental Model: A Scoping Review. Eur J Dent. 2023 Jul;17(03):623-8.

https://doi.org/10.1055/s-0042-1757468

PMid:36977479 PMCid:PMC10569876

Schreck J, Niehoff JH, Saeed S, Kroeger JR, Lennartz S, Laukamp KR, et al. Dental implant artifacts: Evaluation of photon counting CT-derived virtual monoenergetic images in combination with iterative metal artifact reduction algorithms. Eur J Radiol. 2025 Jun;187:112117.

https://doi.org/10.1016/j.ejrad.2025.112117

PMid:40252281

Vanden Broeke L, Grillon M, Yeung AWK, Wu W, Tanaka R, Vardhanabhuti V. Feasibility of photon-counting spectral CT in dental applications-a comparative qualitative analysis. BDJ Open. 2021 Jan 27;7(1):1-8.

https://doi.org/10.1038/s41405-021-00060-x

PMid:33504760 PMCid:PMC7840988

Li B, Hu Y, Xu S, Li B, Inscoe CR, Tyndall DA, et al. Low-cost dual-energy CBCT by spectral filtration of a dual focal spot X-ray source. Sci Rep. 2024 Apr 30;14(1):9886.

https://doi.org/10.1038/s41598-024-60774-4

PMid:38688995 PMCid:PMC11061110

Zanon C, Pepe A, Cademartiri F, Bini C, Maffei E, Quaia E, et al. Potential Benefits of Photon-Counting CT in Dental Imaging: A Narrative Review. J Clin Med. 2024 Apr 22;13(8):2436.

https://doi.org/10.3390/jcm13082436

PMid:38673712 PMCid:PMC11051238

Wajer R, Wajer A, Kazimierczak N, Wilamowska J, Serafin Z. The Impact of AI on Metal Artifacts in CBCT Oral Cavity Imaging. Diagnostics. 2024 Jun 17;14(12):1280.

https://doi.org/10.3390/diagnostics14121280

PMid:38928694 PMCid:PMC11203150

Troiano G, Rapani A, Fanelli F, Berton F, Caroprese M, Lombardi T, et al. Inter and intra-operator reliability of Lekholm and Zarb classification and proposal of a novel radiomic data-driven clustering for qualitative assessment of edentulous alveolar ridges. Clin Oral Implants Res. 2024 Jul;35(7):729-38.

https://doi.org/10.1111/clr.14271

PMid:38629945

Calabrò E, Lisnic T, Cè M, Macrì L, Rabaiotti FL, Cellina M. Dynamic Digital Radiography (DDR) in the Diagnosis of a Diaphragm Dysfunction. Diagnostics. 2024 Dec 24;15(1):2.

https://doi.org/10.3390/diagnostics15010002

PMid:39795531 PMCid:PMC11720026

Thirunavukkarasu R, Mani B, Nirupama C, Muralidharan D, Tamizhmani J, Prasanth C. CBCT in orthodontics: A boon for the millennial generation. Int J Health Sci. 2022 Mar 16;6(S1):676-86.

https://doi.org/10.53730/ijhs.v6nS1.4814

Filonenko VV. Determination of density of bone structures of the maxillo-facial region in clinical practice. Exp Clin Med. 2023 Sep 30;92(3):26-34.

https://doi.org/10.35339/ekm.2023.92.3.fil

Downloads

Published

2025-04-18

How to Cite

Rostamzadeh, S., Ghasemirad, M., Gerayeli, M., Abasi , M., Pouresmaeliyan Roumani, M., Ganjehzadeh, S., & Moharrami, A. (2025). Radiographic Evaluation of Implant Stability and Osseointegration in Adult Orthodontic Patients. Galen Medical Journal, 14, e3799. https://doi.org/10.31661/gmj.v14i.3799

Issue

Section

Review Article