Scoliosis as a Paradigm of Pathological Spinal Curvature: Molecular Mechanisms and Imaging Innovations

Authors

  • Alireza Ghanbari Bone and Joint Reconstruction Research Center, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
  • Tohid Emami Meybodi 1-Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran /2-Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Bahare Nezhadmohammad Namaghi 1-Bone and Joint Reconstruction Research Center, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran / 2-Student Research Committee, School of Medicine, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
  • Tohid Khalili Bisafar 1-Bone and Joint Reconstruction Research Center, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran /2-Student Research Committee, School of Medicine, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
  • Majid Jahanshahi Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
  • Karo Khosravi 1-Bone and Joint Reconstruction Research Center, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran / 2-Student Research Committee, School of Medicine, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
  • Khatere Mokhtari Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
  • Babak Roshanravan 1-Bone and Joint Reconstruction Research Center, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran / 2-Student Research Committee, School of Medicine, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran /3-Department of Orthopedic Surgery, School of Medicine, Imam Reza Hospital, Birjand University of Medical Sciences, Birjand, Iran

Keywords:

Spinal Curvature; Scoliosis; Imaging Techniques; Spinal Deformities; Molecular Mechanisms

Abstract

Pathological spinal curvature encompasses a broad spectrum of deformities that arise from a complex interplay of genetic, molecular, and biomechanical factors. This review synthesizes current knowledge on the molecular underpinnings of spinal deformities, with a focus on the dysregulation of non-coding RNAs, aberrant activation of the Wnt signaling pathway, inflammatory cytokine imbalances, and epigenetic modifications. In parallel, the article provides a detailed overview of both conventional and emerging imaging techniques used in the clinical assessment of spinal curvature. Traditional radiographic methods, such as Cobb angle measurement and Ferguson’s method, are critically compared with advanced modalities—including surface topography, ultrasound imaging, and computer-aided 3D reconstructions—that promise enhanced diagnostic accuracy while minimizing radiation exposure. By bridging molecular insights with clinical imaging advancements, this review underscores the importance of an integrated diagnostic approach for early detection and effective management of scoliosis and related spinal deformities. The convergence of these disciplines not only enriches our understanding of the pathogenesis of spinal curvature but also lays the foundation for the development of personalized therapeutic strategies.

References

Horng MH, et al. Cobb Angle Measurement of Spine from XRay Images Using Convolutional Neural Network. Comput Math Methods Med. 2019; 2019: 6357171.

https://doi.org/10.1155/2019/6357171

PMid:30996731 PMCid:PMC6399566

Jin C, et al. A Review of the Methods on Cobb Angle Measurements for Spinal Curvature. Sensors. 2022; 22(9): 3258.

https://doi.org/10.3390/s22093258

PMid:35590951 PMCid:PMC9101880

Diebo BG, et al. Adult spinal deformity. Lancet. 2019; 394(10193): 160172.

https://doi.org/10.1016/S0140-6736(19)31125-0

PMid:31305254

Li Z, et al. Unplanned reoperation within 30 days of fusion surgery for spinal deformity. PLoS One. 2014; 9(3): e87172.

https://doi.org/10.1371/journal.pone.0087172

PMid:24595145 PMCid:PMC3942308

Lombardi G, et al. Biochemistry of adolescent idiopathic scoliosis. Advances in clinical chemistry. 2011; 54: 165182.

Wai MGC, et al. A review of pinealectomyinduced melatonindeficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. International journal of molecular sciences. 2014; 15(9): 1648416499.

https://doi.org/10.3390/ijms150916484

PMid:25238413 PMCid:PMC4200812

Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. Scientifica. 2012; 2012(1): 152365.

https://doi.org/10.6064/2012/152365

PMid:24278672 PMCid:PMC3820596

Wang S, et al. Expression of Runx2 and type X collagen in vertebral growth plate of patients with adolescent idiopathic scoliosis. Connective tissue research. 2010; 51(3): 188196.

https://doi.org/10.3109/03008200903215590

PMid:20073986

Shen J, et al. Abnormalities associated with congenital scoliosis: a retrospective study of 226 Chinese surgical cases. Spine. 2013; 38(10): 814818.

https://doi.org/10.1097/BRS.0b013e31827ed125

PMid:23197014

Li Z, et al. Vitamin A deficiency induces congenital spinal deformities in rats. PLoS ONE. 2012;7(10): e46565.

https://doi.org/10.1371/journal.pone.0046565

PMid:23071590 PMCid:PMC3465343

Li Z, X Yu,Shen J. Environmental aspects of congenital scoliosis. Environmental Science and Pollution Research. 2015; 22: 57515755.

https://doi.org/10.1007/s11356-015-4144-0

PMid:25628116

Pourquié O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell. 2011; 145(5): 650663.

https://doi.org/10.1016/j.cell.2011.05.011

PMid:21620133 PMCid:PMC3164975

Sparrow DB, et al. A mechanism for geneenvironment interaction in the etiology of congenital scoliosis. Cell. 2012; 149(2): 295306.

https://doi.org/10.1016/j.cell.2012.02.054

PMid:22484060

Man GCW, et al. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. Journal of pineal research. 2011; 50(4): 395402.

https://doi.org/10.1111/j.1600-079X.2011.00857.x

PMid:21480980

Hayes M, et al. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nature communications. 2014; 5(1): 4777.

https://doi.org/10.1038/ncomms5777

PMid:25182715 PMCid:PMC4155517

Grauers A, et al. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. The Spine Journal. 2015; 15(10): 22392246.

https://doi.org/10.1016/j.spinee.2015.05.013

PMid:25987191

Xu E, et al. A genetic variant in GPR126 causing a decreased inclusion of exon 6 is associated with cartilage development in adolescent idiopathic scoliosis population. BioMed research international. 2019; 2019(1): 4678969.

https://doi.org/10.1155/2019/4678969

PMid:30886859 PMCid:PMC6388357

Ogura Y, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. The American Journal of Human Genetics. 2015; 97(2): 337342.

https://doi.org/10.1016/j.ajhg.2015.06.012

PMid:26211971 PMCid:PMC4573260

Giampietro P, et al. An analysis of PAX1 in the development of vertebral malformations. Clinical genetics. 2005; 68(5): 448453.

https://doi.org/10.1111/j.1399-0004.2005.00520.x

PMid:16207213

Safaee MM, Ames CP, Smith JC. Epidemiology and Socioeconomic Trends in Adult Spinal Deformity Care. Neurosurgery. 2020; 87(1): 2532.

https://doi.org/10.1093/neuros/nyz454

PMid:31620794

Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis of ncRNA through deep sequencing techniques. Frontiers in bioengineering and biotechnology. 2015; 3: 77.

https://doi.org/10.3389/fbioe.2015.00077

PMid:26090362 PMCid:PMC4453482

Place RF, Noonan EJ. Noncoding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress and Chaperones. 2014; 19(2): 159172.

https://doi.org/10.1007/s12192-013-0456-5

PMid:24002685 PMCid:PMC3933615

Li T, et al. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget. 2016; 7(8): 8601.

https://doi.org/10.18632/oncotarget.6926

PMid:26788991 PMCid:PMC4890990

Li Z, et al. DNA methylation downregulated mir10b acts as a tumor suppressor in gastric cancer. Gastric cancer. 2015; 18: 4354.

https://doi.org/10.1007/s10120-014-0340-8

PMid:24481854

Wu WK, et al. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis. 2011; 32(3): 247253.

https://doi.org/10.1093/carcin/bgq243

PMid:21081475

Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome biology. 2017; 18: 113.

https://doi.org/10.1186/s13059-017-1348-2

PMid:29084573 PMCid:PMC5663108

Barrett SP , Salzman J. Circular RNAs: analysis, expression and potential functions. Development. 2016; 143(11): 18381847.

https://doi.org/10.1242/dev.128074

PMid:27246710 PMCid:PMC4920157

Yu X, et al. MicroRNA10b induces vascular muscle cell proliferation through Akt pathway by targeting TIP30. Current vascular pharmacology. 2015; 13(5): 679686.

https://doi.org/10.2174/1570161113666150123112751

PMid:25612666

Li Z, et al. RETRACTED: Micro RNA‐379 suppresses osteosarcoma progression by targeting PDK 1. Journal of cellular and molecular medicine. 2017; 21(2): 315323.

https://doi.org/10.1111/jcmm.12966

PMid:27781416 PMCid:PMC5264134

Li Z, et al. Emerging roles of long non‐coding RNAs in neuropathic pain. Cell proliferation. 2019; 52(1): e12528.

https://doi.org/10.1111/cpr.12528

PMid:30362191 PMCid:PMC6430490

Li Z, et al. Long non‐coding RNA s in nucleus pulposus cell function and intervertebral disc degeneration. Cell proliferation. 2018; 51(5): e12483.

https://doi.org/10.1111/cpr.12483

PMid:30039593 PMCid:PMC6528936

Li Z, X Yu, J Shen. Long noncoding RNAs: emerging players in osteosarcoma. Tumor Biology. 2016; 37: 28112816.

https://doi.org/10.1007/s13277-015-4749-4

PMid:26718212

Zheng J, et al. Long nonding RNA UCA1 regulates neural stem cell differentiation by controlling miR1/Hes1 expression. American Journal of Translational Research. 2017; 9(8): 3696.

Yu Y, et al. LINC 00152: a pivotal oncogenic long non‐coding RNA in human cancers. Cell proliferation. 2017; 50(4): e12349.

https://doi.org/10.1111/cpr.12349

PMid:28464433 PMCid:PMC6529135

Zhang J, et al. CRNDE: an important oncogenic long non‐coding RNA in human cancers. Cell proliferation. 2018; 51(3): e12440.

https://doi.org/10.1111/cpr.12440

PMid:29405523 PMCid:PMC6528921

Yu XJ, et al. Long noncoding RNAs and novel inflammatory genes determined by RNA sequencing in human lymphocytes are upregulated in permanent atrial fibrillation. American Journal of Translational Research. 2017; 9(5): 2314.

Wang X, et al. LncRNA‐RP11‐296A18 3/miR‐138/HIF1A pathway regulates the proliferation ECM synthesis of human nucleus pulposus cells (HNPCs). Journal of Cellular Biochemistry. 2017; 118(12): 48624871.

https://doi.org/10.1002/jcb.26166

PMid:28543639

Bochenek G, et al. The large noncoding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Human molecular genetics. 2013; 22(22): 45164527.

https://doi.org/10.1093/hmg/ddt299

PMid:23813974

Li Z, et al. Emerging roles of non‐coding RNAs in scoliosis. Cell proliferation. 2020; 53(2): e12736.

https://doi.org/10.1111/cpr.12736

PMid:31828859 PMCid:PMC7046479

Xie Z, et al. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PloS one. 2013; 8(4): e57502.

https://doi.org/10.1371/journal.pone.0057502

PMid:23560033 PMCid:PMC3613402

Zhu W, et al. Diagnostic value of serum miR182, miR183, miR210, and miR126 levels in patients with earlystage nonsmall cell lung cancer. PloS one. 2016;11(4): e0153046.

https://doi.org/10.1371/journal.pone.0153046

PMid:27093275 PMCid:PMC4836744

Shimizu T, et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. European urology. 2013; 63(6): 10911100.

https://doi.org/10.1016/j.eururo.2012.11.030

PMid:23200812

Yu X, et al. MicroRNA10b promotes nucleus pulposus cell proliferation through RhoCAkt pathway by targeting HOXD10 in intervetebral disc degeneration. PloS one. 2013; 8(12): e83080.

https://doi.org/10.1371/journal.pone.0083080

PMid:24376640 PMCid:PMC3869743

Yamasaki K, et al. Angiogenic microRNA‐210 is present in cells surrounding osteonecrosis. Journal of Orthopaedic Research. 2012; 30(8): 12631270.

https://doi.org/10.1002/jor.22079

PMid:22287106

Chen WK, et al. lnc RNA s: novel players in intervertebral disc degeneration and osteoarthritis. Cell proliferation. 2017; 50(1): e12313.

https://doi.org/10.1111/cpr.12313

PMid:27859817 PMCid:PMC6529103

Chen C, et al. Identification of competing endogenous RNA regulatory networks in vitamin A deficiencyinduced congenital scoliosis by transcriptome sequencing analysis. Cellular Physiology and Biochemistry. 2018; 48(5): 21342146.

https://doi.org/10.1159/000492556

PMid:30110682

Chen C, et al. LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling. Journal of Cellular and Molecular Medicine. 2019; 23(7): 45824591.

https://doi.org/10.1111/jcmm.14355

PMid:31044535 PMCid:PMC6584475

Yu L, et al. Osteoblastic microRNAs in skeletal diseases: biological functions and therapeutic implications. Engineered Regeneration. 2022; 3(3): 241257.

https://doi.org/10.1016/j.engreg.2022.06.002

Zhu A, Y Liu , Y Liu. Identification of key genes and regulatory mechanisms in adult degenerative scoliosis. Journal of Clinical Neuroscience. 2024; 119: 170179.

https://doi.org/10.1016/j.jocn.2023.12.002

PMid:38103507

Zhao H, A Lu, X He. Roles of MicroRNAs in bone destruction of rheumatoid arthritis. Frontiers in Cell and Developmental Biology. 2020; 8: 600867.

https://doi.org/10.3389/fcell.2020.600867

PMid:33330493 PMCid:PMC7710907

Chen C, et al. MicroRNA21: an emerging player in bone diseases. Frontiers in Pharmacology. 2021; 12: 722804.

https://doi.org/10.3389/fphar.2021.722804

PMid:34557095 PMCid:PMC8452984

Zhang J, et al. Aberrant miR‐145-5p/β‐catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. The FASEB Journal. 2018; 32(12): 65376549.

https://doi.org/10.1096/fj.201800281

PMid:29906249

Sato T, et al. Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals. Experimental and Therapeutic Medicine. 2024; 28(5): 416.

https://doi.org/10.3892/etm.2024.12705

PMid:39301254 PMCid:PMC11411403

Liao J, et al. lncRNA H19 mediates BMP9induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget. 2017; 8(32): 53581.

https://doi.org/10.18632/oncotarget.18655

PMid:28881833 PMCid:PMC5581132

Sun H, et al. Long noncoding RNA MEG3 is involved in osteogenic differentiation and bone diseases. Biomedical Reports. 2020; 13(1): 1521.

https://doi.org/10.3892/br.2020.1305

PMid:32494359 PMCid:PMC7257936

Sun D, et al. Advances in epigenetic research of adolescent idiopathic scoliosis and congenital scoliosis. Frontiers in Genetics. 2023; 14: 1211376.

https://doi.org/10.3389/fgene.2023.1211376

PMid:37564871 PMCid:PMC10411889

Yousuf S, et al. Genomewide expression profiling and networking reveals an imperative role of IMFassociated novel CircRNAs as ceRNA in pigs. Cells. 2022; 11(17): 2638.

https://doi.org/10.3390/cells11172638

PMid:36078046 PMCid:PMC9454643

Tong J, et al. Transcriptomic profiling in human decidua of severe preeclampsia detected by RNA sequencing. Journal of cellular biochemistry. 2018; 119(1): 607615.

https://doi.org/10.1002/jcb.26221

PMid:28618048

Zhou J, Y Fan, H Chen. Analyses of long noncoding RNA and mRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model. RNA biology. 2017; 14(12): 18101826.

https://doi.org/10.1080/15476286.2017.1371400

PMid:28854101 PMCid:PMC5731818

SecoCervera M, et al. Small RNAseq analysis of circulating miRNAs to identify phenotypic variability in Friedreich's ataxia patients. Scientific data. 2018; 5(1): 19.

https://doi.org/10.1038/sdata.2018.21

PMid:29509186 PMCid:PMC5839159

Li J, et al. Suv39h1 promotes facet joint chondrocyte proliferation by targeting miR15a/Bcl2 in idiopathic scoliosis patients. Clinical epigenetics. 2019; 11: 113.

https://doi.org/10.1186/s13148-019-0706-1

PMid:31337422 PMCid:PMC6651996

Zhuang Q, et al. Long noncoding RNA lncAIS downregulation in mesenchymal stem cells is implicated in the pathogenesis of adolescent idiopathic scoliosis. Cell Death & Differentiation. 2019; 26(9): 17001715.

https://doi.org/10.1038/s41418-018-0240-2

PMid:30464226 PMCid:PMC6748078

Jiang H, et al. Asymmetric expression of H19 and ADIPOQ in concave/convex paravertebral muscles is associated with severe adolescent idiopathic scoliosis. Molecular Medicine. 2018; 24: 112.

https://doi.org/10.1186/s10020-018-0049-y

PMid:30241458 PMCid:PMC6145194

Ogura Y, et al. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Human molecular genetics. 2017; 26(20): 40864092.

https://doi.org/10.1093/hmg/ddx291

PMid:29016859

GarcíaGiménez JL, et al. Circulating miRNAs as diagnostic biomarkers for adolescent idiopathic scoliosis. Scientific reports. 2018; 8(1): 2646.

https://doi.org/10.1038/s41598-018-21146-x

PMid:29422531 PMCid:PMC5805715

Liu G, et al. Genome‐Wide Analysis of circular RNAs and validation of hsa_circ_0006719 as a potential novel diagnostic biomarker in congenital scoliosis patients. Journal of Cellular and Molecular Medicine. 2020; 24(12): 70157022.

https://doi.org/10.1111/jcmm.15370

PMid:32394619 PMCid:PMC7299707

Cheng JC, et al. Adolescent idiopathic scoliosis. Nature reviews disease primers. 2015; 1(1): 121.

https://doi.org/10.1038/nrdp.2015.63

PMid:27227344

Rodda SJ , AP McMahon. Distinct roles for Hedgehog and canonical Wnt signaling in specification. differentiation and maintenance of osteoblast: progenitors; 2006.

https://doi.org/10.1242/dev.02480

PMid:16854976

Regard JB, et al. Wnt/βcatenin signaling is differentially regulated by Gα proteins and contributes to fibrous dysplasia. Proceedings of the National Academy of Sciences. 2011; 108(50): 2010120106.

https://doi.org/10.1073/pnas.1114656108

PMid:22106277 PMCid:PMC3250124

Wang Z, et al. Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity. Scientific Reports. 2017; 7(1): 40265.

https://doi.org/10.1038/srep40265

PMid:28054655 PMCid:PMC5214167

Vasiliadis ES, et al. Sclerostin and its involvement in the pathogenesis of idiopathic scoliosis. Journal of Clinical Medicine. 2021; 10(22): 5286.

https://doi.org/10.3390/jcm10225286

PMid:34830568 PMCid:PMC8618875

Cisternas P, et al. Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis. Molecular neurobiology. 2014; 49: 574589.

https://doi.org/10.1007/s12035-013-8540-5

PMid:24014138

Kondo N, et al. Intervertebral disc development is regulated by Wnt/βcatenin signaling. Spine. 2011; 36(8): E513E518.

https://doi.org/10.1097/BRS.0b013e3181f52cb5

PMid:21270710 PMCid:PMC3072453

Tamamura Y, et al. Developmental regulation of Wnt/βcatenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. Journal of Biological Chemistry. 2005; 280(19): 1918519195.

https://doi.org/10.1074/jbc.M414275200

PMid:15760903

Acaroglu E, et al. Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine. 2009; 34(18): E659E663.

https://doi.org/10.1097/BRS.0b013e3181a3c7a2

PMid:19680092

Tansey MG, et al. Ca (2+)dependent phosphorylation of myosin light chain kinase decreases the Ca2+ sensitivity of light chain phosphorylation within smooth muscle cells. Journal of Biological Chemistry. 1994; 269(13): 99129920.

https://doi.org/10.1016/S0021-9258(17)36969-7

Nishizawa Y, et al. Calcium/calmodulinmediated action of calcitonin on lipid metabolism in rats. The Journal of clinical investigation. 1988; 82(4): 11651172.

https://doi.org/10.1172/JCI113713

PMid:2844851 PMCid:PMC442666

Gooi J, et al. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone. 2010; 46(6): 14861497.

https://doi.org/10.1016/j.bone.2010.02.018

PMid:20188226

Zhou R, et al. Calcitonin generelated peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Molecular Medicine Reports. 2016; 13(6): 46894696.

https://doi.org/10.3892/mmr.2016.5117

PMid:27082317 PMCid:PMC4878536

Tu X, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012; 50(1): 209217.

https://doi.org/10.1016/j.bone.2011.10.025

PMid:22075208 PMCid:PMC3246572

Xu E, et al. Asymmetric expression of GPR126 in the convex/concave side of the spine is associated with spinal skeletal malformation in adolescent idiopathic scoliosis population. European Spine Journal. 2019; 28: 19771986.

https://doi.org/10.1007/s00586-019-06001-5

PMid:31079250

Baron R , M Kneissel. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nature medicine. 2013; 19(2): 179192.

https://doi.org/10.1038/nm.3074

PMid:23389618

Karner CM , F Long. Wnt signaling and cellular metabolism in osteoblasts. Cellular and Molecular Life Sciences. 2017; 74(9): 16491657.

https://doi.org/10.1007/s00018-016-2425-5

PMid:27888287 PMCid:PMC5380548

Jiang X, et al. Advances in genetic factors of adolescent idiopathic scoliosis: a bibliometric analysis. Frontiers in Pediatrics. 2024; 11: 1301137.

https://doi.org/10.3389/fped.2023.1301137

PMid:38322243 PMCid:PMC10845672

Gaur T, lengner cJ, Hovhannisyan H, Bhat ra, Bodine PV, Komm BS, ET AL. canonical WnT signaling promotes osteogenesis by directly stimulating runx2 gene expression. J Biol chem. 2005; 280: 3313233140.

https://doi.org/10.1074/jbc.M500608200

PMid:16043491

de Boer J, et al. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone. 2004; 34(5): 818826.

https://doi.org/10.1016/j.bone.2004.01.016

PMid:15121013

Nikolova S, et al. Role of the IL‐6 Gene in the Etiopathogenesis of Idiopathic Scoliosis. Analytical Cellular Pathology. 2015; 2015(1): 621893.

https://doi.org/10.1155/2015/621893

PMid:26199858 PMCid:PMC4493265

Nikolova ST, et al. Association between IL6 and MMP3 common genetic polymorphisms and idiopathic scoliosis in Bulgarian patients: a casecontrol study. Spine. 2016; 41(9): 785791.

https://doi.org/10.1097/BRS.0000000000001360

PMid:26656061

Zhou S, et al. A singlenucleotide polymorphism rs708567 in the IL17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a casecontrol study. BMC musculoskeletal disorders. 2012; 13: 16.

https://doi.org/10.1186/1471-2474-13-181

PMid:22999050 PMCid:PMC3517504

Zheng X, Z Ma ,X Gu. Plasma levels of tumor necrosis factor‑α in adolescent idiopathic scoliosis patients serve as a predictor for the incidence of early postoperative cognitive dysfunction following orthopedic surgery. Experimental and therapeutic medicine. 2015; 9(4): 14431447.

https://doi.org/10.3892/etm.2015.2241

PMid:25780449 PMCid:PMC4353783

Sobhan MR, et al. Association of the IL6174G> C (rs1800795) polymorphism with adolescent idiopathic scoliosis: evidence from a casecontrol study and metaanalysis. Revista Brasileira de Ortopedia. 2020; 55: 1726.

Bisson DG, et al. Toll‐like receptor involvement in adolescent scoliotic facet joint degeneration. Journal of cellular and molecular medicine. 2020; 24(19): 1135511365.

https://doi.org/10.1111/jcmm.15733

PMid:32853438 PMCid:PMC7576299

Bertelè L, et al. Relationship between inflammatory laboratory parameters and severity of adolescent idiopathic scoliosis: A pilot study. Journal of Back and Musculoskeletal Rehabilitation. 2024; (Preprint): 112.

https://doi.org/10.3233/BMR-230186

PMid:38306021 PMCid:PMC11307059

Petrosyan E, et al. Biological principles of adult degenerative scoliosis. Trends in molecular medicine. 2023; 29(9): 740752.

https://doi.org/10.1016/j.molmed.2023.05.012

PMid:37349248

Huang X, et al. Risk factors and treatment strategies for adjacent segment disease following spinal fusion. Molecular Medicine Reports. 2024; 31(2): 33.

https://doi.org/10.3892/mmr.2024.13398

PMid:39575466 PMCid:PMC11605282

Liang T, et al. Constructing intervertebral disc degeneration animal model: A review of current models. Frontiers in surgery. 2023; 9: 1089244.

https://doi.org/10.3389/fsurg.2022.1089244

PMid:36969323 PMCid:PMC10036602

Delcuve GP, M Rastegar,JR Davie. Epigenetic control. Journal of cellular physiology. 2009; 219(2): 243250.

https://doi.org/10.1002/jcp.21678

PMid:19127539

Laird PW. Cancer epigenetics. Human molecular genetics. 2005; 14(suppl_1): R65R76.

https://doi.org/10.1093/hmg/ddi113

PMid:15809275

Zhang L, Q Lu ,C Chang. Epigenetics in health and disease. Epigenetics in allergy and autoimmunity. 2020: 355.

https://doi.org/10.1007/978-981-15-3449-2

Peng Y, et al. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis. Chinese medical journal. 2020; 133(4): 483493.

https://doi.org/10.1097/CM9.0000000000000652

PMid:31972723 PMCid:PMC7046244

Clapier CR , BR Cairns. The biology of chromatin remodeling complexes. Annual review of biochemistry. 2009; 78(1): 273304.

https://doi.org/10.1146/annurev.biochem.77.062706.153223

PMid:19355820

Kitagawa H, et al. Retracted: The chromatinremodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell. 2003; 113(7): 905917.

https://doi.org/10.1016/S0092-8674(03)00436-7

PMid:12837248

Denslow S, P Wade. The human Mi2/NuRD complex and gene regulation. Oncogene. 2007; 26(37): 54335438.

https://doi.org/10.1038/sj.onc.1210611

PMid:17694084

Szyf M. The dynamic epigenome and its implications in toxicology. Toxicological Sciences. 2007 Nov 1;100(1):723.

https://doi.org/10.1093/toxsci/kfm177

PMid:17675334

Miranda TB , PA Jones. DNA methylation: the nuts and bolts of repression. Journal of cellular physiology. 2007; 213(2): 384390.

https://doi.org/10.1002/jcp.21224

PMid:17708532

Gerdhem P, et al. Serum level of cartilage oligomeric matrix protein is lower in children with idiopathic scoliosis than in nonscoliotic controls. European Spine Journal. 2015; 24: 256261.

https://doi.org/10.1007/s00586-014-3691-2

PMid:25427671

Mao Sh, et al. Quantitative evaluation of the relationship between COMP promoter methylation and the susceptibility and curve progression of adolescent idiopathic scoliosis. European Spine Journal. 2018; 27: 272277.

https://doi.org/10.1007/s00586-017-5309-y

PMid:28951969

Shi B, et al. Abnormal PITX1 gene methylation in adolescent idiopathic scoliosis: a pilot study. BMC Musculoskeletal Disorders. 2018; 19: 16.

https://doi.org/10.1186/s12891-018-2054-2

PMid:29743058 PMCid:PMC5941792

Logan M, CJ Tabin. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999; 283(5408): 17361739.

https://doi.org/10.1126/science.283.5408.1736

PMid:10073939

Alvarado DM, et al. Pitx1 haploinsufficiency causes clubfoot in humans and a clubfootlike phenotype in mice. Human molecular genetics. 2011; 20(20): 39433952.

https://doi.org/10.1093/hmg/ddr313

PMid:21775501 PMCid:PMC3177645

Pandey SN, et al. Conditional overexpression of PITX1 causes skeletal muscle dystrophy in mice. Biology open. 2012; 1(7): 629639.

https://doi.org/10.1242/bio.20121305

PMid:23125914 PMCid:PMC3486706

Wu Y, et al. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis. Journal of Translational Medicine. 2020;18: 110.

https://doi.org/10.1186/s12967-020-02367-z

PMid:32448279 PMCid:PMC7245753

TajulArifin K, et al. Identification and analysis of chromodomaincontaining proteins encoded in the mouse transcriptome. Genome research. 2003; 13(6b): 14161429.

https://doi.org/10.1101/gr.1015703

PMid:12819141 PMCid:PMC403676

Desh H, et al. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion. Archives of oral biology. 2014; 59(6): 601607.

https://doi.org/10.1016/j.archoralbio.2014.03.005

PMid:24698832 PMCid:PMC4049538

Meng Y, et al. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis. EBioMedicine. 2018; 36: 489496.

https://doi.org/10.1016/j.ebiom.2018.09.014

PMid:30241917 PMCid:PMC6197569

Roughley PJ, et al. The role of hyaluronan produced by Has2 gene expression in development of the spine. Spine. 2011; 36(14): E914E920.

https://doi.org/10.1097/BRS.0b013e3181f1e84f

PMid:21224752

Shi B, et al. Quantitation analysis of PCDH10 methylation in adolescent idiopathic scoliosis using pyrosequencing study. Spine. 2020; 45(7): E373E378.

https://doi.org/10.1097/BRS.0000000000003292

PMid:31651684

Shi D, VV Murty, W Gu. PCDH10, a novel p53 transcriptional target in regulating cell migration. Cell Cycle. 2015; 14(6): 857866.

https://doi.org/10.1080/15384101.2015.1004935

PMid:25590240 PMCid:PMC4615063

Chmielewska M, et al. Methylation of estrogen receptor 2 (ESR2) in deep paravertebral muscles and its association with idiopathic scoliosis. Scientific Reports. 2020; 10(1): 22331.

https://doi.org/10.1038/s41598-020-78454-4

PMid:33339862 PMCid:PMC7749113

Janusz P, et al. Methylation level of the regulatory regions of the estrogen receptor type 1 gene in paravertebral muscles of girls with idiopathic scoliosis. in Research into Spinal Deformities 9. 2021; Press: 254254.

https://doi.org/10.3233/SHTI210484

OtonGonzalez L, et al. Genetics and epigenetics of bone remodeling and metabolic bone diseases. International Journal of Molecular Sciences. 2022; 23(3): 1500.

https://doi.org/10.3390/ijms23031500

PMid:35163424 PMCid:PMC8836080

Kazezian Z, K Joyce, A Pandit. The role of hyaluronic acid in intervertebral disc regeneration. Applied Sciences. 2020; 10(18): 6257.

https://doi.org/10.3390/app10186257

Simony A, et al. Concordance rates of adolescent idiopathic scoliosis in a Danish twin population. Spine. 2016; 41(19): 15031507.

https://doi.org/10.1097/BRS.0000000000001681

PMid:27163371

Liu G, et al. Wholegenome methylation analysis of phenotype discordant monozygotic twins reveals novel epigenetic perturbation contributing to the pathogenesis of adolescent idiopathic scoliosis. Frontiers in bioengineering and biotechnology. 2019; 7: 364.

https://doi.org/10.3389/fbioe.2019.00364

PMid:31921798 PMCid:PMC6914696

Zhang Y, T Pizzute, M Pei. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell and tissue research. 2014; 358(3): 633649.

https://doi.org/10.1007/s00441-014-2010-x

PMid:25312291 PMCid:PMC4234693

Iezaki T, et al. The MAPK Erk5 is necessary for proper skeletogenesis involving a SmurfSmadSox9 molecular axis. Development. 2018; 145(14): dev164004.

https://doi.org/10.1242/dev.164004

PMid:29986870

Liu G, et al. Wholegenome methylation analysis reveals novel epigenetic perturbations of congenital scoliosis. Molecular TherapyNucleic Acids. 2021; 23: 12811287.

https://doi.org/10.1016/j.omtn.2021.02.002

PMid:33717649 PMCid:PMC7907230

Carry PM, et al. Severity of idiopathic scoliosis is associated with differential methylation: An epigenomewide association study of monozygotic twins with idiopathic scoliosis. Genes. 2021; 12(08): 1191.

https://doi.org/10.3390/genes12081191

PMid:34440365 PMCid:PMC8391702

Mao S, et al. Association between genetic determinants of peak height velocity during puberty and predisposition to adolescent idiopathic scoliosis. Spine. 2013; 38(12): 10341039.

https://doi.org/10.1097/BRS.0b013e318287fcfd

PMid:23354108

Harada GK, et al. Imaging in Spine Surgery: Current Concepts and Future Directions. Spine Surg Relat Res. 2020; 4(2): 99110.

https://doi.org/10.22603/ssrr.2020-0011

PMid:32405554 PMCid:PMC7217684

Isherwood I. Sir Godfrey Hounsfield. Radiology. 2005; 234(3): 975976.

https://doi.org/10.1148/radiol.2343042584

Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. nature. 1973 Mar 16;242(5394):1901.

https://doi.org/10.1038/242190a0

Cobb J. Outline for the study. of scoliosis: Instructional course lecture; 1948.

Kalender WA. Computed tomography. fundamentals, system technology, image quality, applications: John Wiley & Sons; 2011.

Tins B, V CassarPullicino. Controversies in "clearing" trauma to the cervical spine in Seminars in Ultrasound, CT and MRI. Elsevier. 2007; 28(2): 94100.

https://doi.org/10.1053/j.sult.2007.01.005

PMid:17432763

Modic MT, JS Ross. Lumbar degenerative disk disease. Radiology. 2007; 245(1): 4361.

https://doi.org/10.1148/radiol.2451051706

PMid:17885180

Boden SD, et al. Abnormal magneticresonance scans of the lumbar spine in asymptomatic subjects A prospective investigation. JBJS. 1990; 72(3): 403408.

https://doi.org/10.2106/00004623-199072030-00013

Lightstone DF, et al. Reliability of biomechanical mensuration methods of the sagittal cervical spine on radiography used in clinical practice: A systematic review of literature. medRxiv. 2025: 2025.05. 06.25327135.

https://doi.org/10.1101/2025.05.06.25327135

Illés T, S Somoskeöy. The EOS™ imaging system and its uses in daily orthopaedic practice. International orthopaedics. 2012; 36: 13251331.

https://doi.org/10.1007/s00264-012-1512-y

PMid:22371113 PMCid:PMC3385897

Drerup B, E Hierholzer. Evaluation of frontal radiographs of scoliotic spines-Part I measurement of position and orientation of vertebrae and assessment of clinical shape parameters. Journal of biomechanics. 1992; 25(11): 13571362.

https://doi.org/10.1016/0021-9290(92)90291-8

PMid:1400537

Wang Q, et al. Reliability and validity study of clinical ultrasound imaging on lateral curvature of adolescent idiopathic scoliosis. PloS one. 2015; 10(8): e0135264.

https://doi.org/10.1371/journal.pone.0135264

PMid:26266802 PMCid:PMC4534204

Kwan CK, et al. Threedimensional (3D) ultrasound imaging for quantitative assessment of frontal cobb angles in patients with idiopathic scoliosis-a systematic review and metaanalysis. BMC Musculoskeletal Disorders. 2025; 26(1): 114.

https://doi.org/10.1186/s12891-025-08467-5

PMid:40045341 PMCid:PMC11881507

Leardini A, et al. Human movement analysis using stereophotogrammetry: Part 3 Soft tissue artifact assessment and compensation. Gait & posture. 2005; 21(2): 212225.

https://doi.org/10.1016/j.gaitpost.2004.05.002

PMid:15639400

Janicki JA, B Alman. Scoliosis: Review of diagnosis and treatment. Paediatr Child Health. 2007; 12(9): 7716.

https://doi.org/10.1093/pch/12.9.771

PMid:19030463 PMCid:PMC2532872

Mahaudens P, JL Thonnard, C Detrembleur. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. The Spine Journal. 2005; 5(4): 427433.

https://doi.org/10.1016/j.spinee.2004.11.014

PMid:15996612

Chen PQ, et al. The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clinical Biomechanics. 1998;13(1, Supplement 1): S52S58.

https://doi.org/10.1016/S0268-0033(97)00075-2

PMid:11430791

Syczewska M, et al. Influence of the structural deformity of the spine on the gait pathology in scoliotic patients. Gait & Posture. 2012; 35(2): 209213.

https://doi.org/10.1016/j.gaitpost.2011.09.008

PMid:21978792

Kim HJ, et al. The risk assessment of a fall in patients with lumbar spinal stenosis. Spine. 2011; 36(9): E588E592.

https://doi.org/10.1097/BRS.0b013e3181f92d8e

PMid:21242866

Lee HR, et al. functional mobility tests for evaluation of functionalities in patients with adult spinal deformity. BMC Musculoskeletal Disorders. 2022; 23(1): 391.

https://doi.org/10.1186/s12891-022-05342-5

PMid:35477445 PMCid:PMC9044638

Ha KY, et al. Clinical relevance of the SRSSchwab classification for degenerative lumbar scoliosis. Spine. 2016; 41(5): E282E288.

https://doi.org/10.1097/BRS.0000000000001229

PMid:26571177

Tiedemann A, et al. The comparative ability of eight functional mobility tests for predicting falls in communitydwelling older people. Age and ageing. 2008; 37(4): 430435.

https://doi.org/10.1093/ageing/afn100

PMid:18487264

Kristensen MT, NB Foss, H Kehlet. Timed "up & go" test as a predictor of falls within 6 months after hip fracture surgery. Physical therapy. 2007; 87(1): 2430.

https://doi.org/10.2522/ptj.20050271

PMid:17142643

Badii M, et al. Comparison of Lifts Versus Tape Measure in Determining Leg Length Discrepancy. The Journal of Rheumatology. 2014; 41(8): 16891694.

https://doi.org/10.3899/jrheum.131089

PMid:25028369

Harris I, A Hatfield, J Walton. Assessing leg length discrepancy after femoral fracture: clinical examination or computed tomography? ANZ journal of surgery. 2005; 75(5): 319321.

https://doi.org/10.1111/j.1445-2197.2005.03349.x

PMid:15932444

Lawrence D. Chiropractic concepts of the short leg: a critical review. Journal of manipulative and physiological therapeutics. 1985; 8(3): 157161.

Reamy BV, JB Slakey. Adolescent idiopathic scoliosis: review and current concepts. American family physician. 2001; 64(1): 111117.

Jiang WW, et al. Patterns of coronal curve changes in forward bending posture: a 3D ultrasound study of adolescent idiopathic scoliosis patients. European Spine Journal. 2018; 27(9): 21392147.

https://doi.org/10.1007/s00586-018-5646-5

PMid:29943198

Izatt MT, GR Bateman, CJ Adam. Evaluation of the iPhone with an acrylic sleeve versus the Scoliometer for rib hump measurement in scoliosis. Scoliosis. 2012; 7(1): 14.

https://doi.org/10.1186/1748-7161-7-14

PMid:22846346 PMCid:PMC3479427

Bunnell WP. An objective criterion for scoliosis screening. J Bone Joint Surg Am. 1984; 66(9): 13817.

https://doi.org/10.2106/00004623-198466090-00010

Bonagamba GH, DM Coelho, AS Oliveira. Inter and intrarater reliability of the scoliometer. Rev Bras Fisioter. 2010; 14(5): 4328.

https://doi.org/10.1590/S1413-35552010005000025

PMid:21049239

Negrini A, et al. Spinal Coronal and Sagittal Balance in 584 Healthy Individuals During Growth: Normal Plumb Line Values and Their Correlation With Radiographic Measurements. Phys Ther. 2019; 99(12): 17121718.

https://doi.org/10.1093/ptj/pzz123

PMid:31504925

Shamim A, T Tanwar, Z Veqar. An Overview of Cervical Spine Posture Assessment Methods. SN Comprehensive Clinical Medicine. 2023; 5(1): 225.

https://doi.org/10.1007/s42399-023-01559-0

Imran AAZ, et al. FullyAutomated Analysis of Scoliosis from Spinal XRay Images. in 2020 IEEE 33rd International Symposium on ComputerBased Medical Systems (CBMS). 2020; :114119.

https://doi.org/10.1109/CBMS49503.2020.00029

Chowanska J, et al. School screening for scoliosis: can surface topography replace examination with scoliometer? Scoliosis, 2012. 7(1): p. 9.

https://doi.org/10.1186/1748-7161-7-9

PMid:22472020 PMCid:PMC3349618

Xiao B, et al. Where should Scoliometer and EOS Imaging be Applied when Evaluating Spinal Rotation in Adolescent Idiopathic Scoliosis A Preliminary Study with Reference to CT Images. Global Spine J. 2024;14(2): 577582.

https://doi.org/10.1177/21925682221116824

PMid:35929422 PMCid:PMC10802522

Wang J, et al. Measurement of scoliosis Cobb angle by end vertebra tilt angle method. J Orthop Surg Res. 2018; 13(1): 223.

https://doi.org/10.1186/s13018-018-0928-5

PMid:30180899 PMCid:PMC6124002

Porto AB, VHA Okazaki. Procedures of assessment on the quantification of thoracic kyphosis and lumbar lordosis by radiography and photogrammetry: A literature review. J Bodyw Mov Ther. 2017; 21(4): 986994.

https://doi.org/10.1016/j.jbmt.2017.01.008

PMid:29037657

Ferguson AB. The study and treatment of scoliosis. South Med J. 1930; 23(2): 116120.

https://doi.org/10.1097/00007611-193002000-00007

Waldt S, A Gersing, M Brügel. Measurements and classifications in spine imaging in Seminars in musculoskeletal radiology. Thieme Medical Publishers. 2014;18(3):219227.

https://doi.org/10.1055/s-0034-1375565

PMid:24896739

Risser JC. The iliac apophysis: an invaluable sign in the management of scoliosis. Clinical Orthopaedics and Related Research®. 1958; 11: 111119.

Nash Jr, JH MOE. A study of vertebral rotation. JBJS. 1969; 51(2): 223229.

https://doi.org/10.2106/00004623-196951020-00002

Dubousset J, et al. [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with lowdose radiation and the standing position: the EOS system]. Bull Acad Natl Med. 2005; 189(2): 28797.

Illés T, S Somoskeöy,. The EOS™ imaging system and its uses in daily orthopaedic practice. Int Orthop. 2012; 36(7): 132531.

https://doi.org/10.1007/s00264-012-1512-y

PMid:22371113 PMCid:PMC3385897

Mehta B, et al. NonInvasive Assessment of Back Surface Topography: Technologies, Techniques and Clinical Utility. Sensors (Basel). 2023; 23(20):8485.

https://doi.org/10.3390/s23208485

PMid:37896577 PMCid:PMC10610923

Smith JS, et al. Clinical and radiographic evaluation of the adult spinal deformity patient. Neurosurgery Clinics. 2013; 24(2): 143156.

https://doi.org/10.1016/j.nec.2012.12.009

PMid:23561553

Knott P, et al. Multicenter Comparison of 3D Spinal Measurements Using Surface Topography With Those From Conventional Radiography. Spine Deform. 2016; 4(2): 98103.

https://doi.org/10.1016/j.jspd.2015.08.008

PMid:27927552

Belli G, et al. Relation between Photogrammetry and Spinal Mouse for Sagittal Imbalance Assessment in Adolescents with Thoracic Kyphosis. J Funct Morphol Kinesiol. 2023; 8(2):68.

https://doi.org/10.3390/jfmk8020068

PMid:37218864 PMCid:PMC10204426

Liu Z, et al. Automatic spinal curvature measurement on ultrasound spine images using Faster RCNN. in 2021 IEEE International Ultrasonics Symposium (IUS). 2021; :14.

https://doi.org/10.1109/IUS52206.2021.9593343

Suzuki S, et al. Ultrasound measurement of vertebral rotation in idiopathic scoliosis. The Journal of Bone & Joint Surgery British Volume. 1989; 71B(2): 252255.

https://doi.org/10.1302/0301-620X.71B2.2647754

PMid:2647754

Ungi T, et al. Spinal Curvature Measurement by Tracked Ultrasound Snapshots. Ultrasound in Medicine & Biology. 2014; 40(2): 447454.

https://doi.org/10.1016/j.ultrasmedbio.2013.09.021

PMid:24268452

Chen W, et al. Reliability of assessing the coronal curvature of children with scoliosis by using ultrasound images. J Child Orthop. 2013; 7(6): 5219.

https://doi.org/10.1007/s11832-013-0539-y

PMid:24432116 PMCid:PMC3886351

Brink RC, et al. A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis. Spine J. 2018; 18(6): 979985.

https://doi.org/10.1016/j.spinee.2017.10.012

PMid:29056566

Li M, et al. Could clinical ultrasound improve the fitting of spinal orthosis for the patients with AIS? European Spine Journal. 2012; 21(10): 19261935.

https://doi.org/10.1007/s00586-012-2273-4

PMid:22447408 PMCid:PMC3463698

Kumar S, et al. A Review of 3D Modalities Used for the Diagnosis of Scoliosis. Tomography. 2024; 10(8): 11921204.

https://doi.org/10.3390/tomography10080090

PMid:39195725 PMCid:PMC11360202

Gennisson JL, et al. Ultrasound elastography: principles and techniques. Diagnostic and interventional imaging. 2013; 94(5): 487495.

https://doi.org/10.1016/j.diii.2013.01.022

PMid:23619292

Dickinson R, C Hill. An ultrasonic method of analyzing tissue motion in BRITISH JOURNAL OF RADIOLOGY . BRITISH INST RADIOLOGY 36 PORTLAND PLACE, LONDON, ENGLAND W1N 4AT. 1980; 53(630): 626627.

Dickinson R, C Hill. Measurement of soft tissue motion using correlation between Ascans. Ultrasound in medicine & biology. 1982; 8(3): 263271.

https://doi.org/10.1016/0301-5629(82)90032-1

PMid:7101574

Shiina T, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound in medicine & biology. 2015; 41(5): 11261147.

https://doi.org/10.1016/j.ultrasmedbio.2015.03.009

PMid:25805059

Garra BS. Elastography: history, principles, and technique comparison. Abdominal imaging. 2015; 40: 680697.

https://doi.org/10.1007/s00261-014-0305-8

PMid:25637125

de Reuver S, et al. Ultrasound Shear Wave Elastography of the Intervertebral Disc and Idiopathic Scoliosis: A Systematic Review. Ultrasound Med Biol. 2022; 48(5): 721729.

https://doi.org/10.1016/j.ultrasmedbio.2022.01.014

PMid:35232608

Ungi T, et al. Automatic Spine Ultrasound Segmentation for Scoliosis Visualization and Measurement. IEEE Transactions on Biomedical Engineering. 2020; 67(11): 32343241.

https://doi.org/10.1109/TBME.2020.2980540

PMid:32167884 PMCid:PMC7654705

Furlanetto TS, et al. Photogrammetry as a tool for the postural evaluation of the spine: A systematic review. World journal of orthopedics. 2016; 7(2): 136.

https://doi.org/10.5312/wjo.v7.i2.136

PMid:26925386 PMCid:PMC4757659

de Albuquerque P, et al. Concordance and Reliability of Photogrammetric Protocols for Measuring the Cervical Lordosis Angle: A Systematic Review of the Literature. J Manipulative Physiol Ther. 2018 41(1): 7180.

https://doi.org/10.1016/j.jmpt.2017.08.004

PMid:29366490

Ruivo RM, P PezaratCorreia, AI Carita. Intrarater and interrater reliability of photographic measurement of upperbody standing posture of adolescents. J Manipulative Physiol Ther. 2015; 38(1): 7480.

https://doi.org/10.1016/j.jmpt.2014.10.009

PMid:25467608

Salahzadeh Z, et al. Assessment of forward head posture in females: observational and photogrammetry methods. J Back Musculoskelet Rehabil. 2014; 27(2): 1319.

https://doi.org/10.3233/BMR-130426

PMid:23963268

Skalli W, et al. Importance of pelvic compensation in posture and motion after posterior spinal fusion using CD instrumentation for idiopathic scoliosis. Spine. 2006; 31(12): E359E366.

https://doi.org/10.1097/01.brs.0000219402.01636.87

PMid:16721280

Diebo BG, et al. From static spinal alignment to dynamic body balance: utilizing motion analysis in spinal deformity surgery. JBJS reviews. 2018; 6(7): e3.

https://doi.org/10.2106/JBJS.RVW.17.00189

PMid:29994800

Yeung KH, et al. Accuracy on the preoperative assessment of patients with adolescent idiopathic scoliosis using biplanar lowdose stereoradiography: a comparison with computed tomography. BMC Musculoskelet Disord. 2020; 21(1): 558.

https://doi.org/10.1186/s12891-020-03561-2

PMid:32811481 PMCid:PMC7433123

Girdler S, et al. Emerging Techniques in Diagnostic Imaging for Idiopathic Scoliosis in Children and Adolescents: A Review of the Literature. World Neurosurg. 2020; 136: 128135.

https://doi.org/10.1016/j.wneu.2020.01.043

PMid:31954891

Lee MC, M Solomito, A Patel. Supine magnetic resonance imaging Cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine. 2013; 38(11): E656E661.

https://doi.org/10.1097/BRS.0b013e31828d255d

PMid:23429689

Shi B, et al. How Does the Supine MRI Correlate With Standing Radiographs of Different Curve Severity in Adolescent Idiopathic Scoliosis? Spine (Phila Pa 1976). 2015; 40(15): 120612.

https://doi.org/10.1097/BRS.0000000000000927

PMid:26222662

Murgai RR, et al. Limited Sequence MRIs for Early Onset Scoliosis Patients Detected 100% of Neural Axis Abnormalities While Reducing MRI Time by 68. Spine (Phila Pa 1976). 2019; 44(12): 866871.

https://doi.org/10.1097/BRS.0000000000002966

PMid:30540716

Spampinato MV, et al. Nonsedated fast spine magnetic resonance imaging in pediatric patients. Pediatr Radiol. 2023; 53(12): 24782489.

https://doi.org/10.1007/s00247-023-05760-0

PMid:37718373

Hirsch FW, et al. Realtime magnetic resonance imaging in pediatric radiology new approach to movement and moving children. Pediatr Radiol. 2021; 51(5): 840846.

https://doi.org/10.1007/s00247-020-04828-5

PMid:33566125 PMCid:PMC8055638

Hirsch FW, et al. Realtime MRI: a new tool of radiologic imaging in small children. Eur J Pediatr. 2023; 182(8): 34053417.

https://doi.org/10.1007/s00431-023-04996-0

PMid:37249681 PMCid:PMC10460313

Roth C, et al. As fast as an Xray: realtime magnetic resonance imaging for diagnosis of idiopathic scoliosis in children and adolescents. Pediatric Radiology. 2024; 54(7): 11681179.

https://doi.org/10.1007/s00247-024-05919-3

PMid:38687346 PMCid:PMC11182802

Ozturk C, et al. The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. Int Orthop. 2010; 34(4): 5436.

https://doi.org/10.1007/s00264-009-0817-y

PMid:19506867 PMCid:PMC2903144

Davids JR, E Chamberlin, DW Blackhurst. Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2004; 86(10): 218795.

https://doi.org/10.2106/00004623-200410000-00009

PMid:15466727

Downloads

Published

2025-11-05

How to Cite

Ghanbari, A., Emami Meybodi, T., Nezhadmohammad Namaghi, B., Khalili Bisafar, T., Jahanshahi, M., Khosravi, K., … Roshanravan, B. (2025). Scoliosis as a Paradigm of Pathological Spinal Curvature: Molecular Mechanisms and Imaging Innovations. Galen Medical Journal, 14, e3814. Retrieved from https://journals.salviapub.com/index.php/gmj/article/view/3814

Issue

Section

Review Article