Scoliosis as a Paradigm of Pathological Spinal Curvature: Molecular Mechanisms and Imaging Innovations
Keywords:
Spinal Curvature; Scoliosis; Imaging Techniques; Spinal Deformities; Molecular MechanismsAbstract
Pathological spinal curvature encompasses a broad spectrum of deformities that arise from a complex interplay of genetic, molecular, and biomechanical factors. This review synthesizes current knowledge on the molecular underpinnings of spinal deformities, with a focus on the dysregulation of non-coding RNAs, aberrant activation of the Wnt signaling pathway, inflammatory cytokine imbalances, and epigenetic modifications. In parallel, the article provides a detailed overview of both conventional and emerging imaging techniques used in the clinical assessment of spinal curvature. Traditional radiographic methods, such as Cobb angle measurement and Ferguson’s method, are critically compared with advanced modalities—including surface topography, ultrasound imaging, and computer-aided 3D reconstructions—that promise enhanced diagnostic accuracy while minimizing radiation exposure. By bridging molecular insights with clinical imaging advancements, this review underscores the importance of an integrated diagnostic approach for early detection and effective management of scoliosis and related spinal deformities. The convergence of these disciplines not only enriches our understanding of the pathogenesis of spinal curvature but also lays the foundation for the development of personalized therapeutic strategies.
References
Horng MH, et al. Cobb Angle Measurement of Spine from XRay Images Using Convolutional Neural Network. Comput Math Methods Med. 2019; 2019: 6357171.
https://doi.org/10.1155/2019/6357171
PMid:30996731 PMCid:PMC6399566
Jin C, et al. A Review of the Methods on Cobb Angle Measurements for Spinal Curvature. Sensors. 2022; 22(9): 3258.
https://doi.org/10.3390/s22093258
PMid:35590951 PMCid:PMC9101880
Diebo BG, et al. Adult spinal deformity. Lancet. 2019; 394(10193): 160172.
https://doi.org/10.1016/S0140-6736(19)31125-0
PMid:31305254
Li Z, et al. Unplanned reoperation within 30 days of fusion surgery for spinal deformity. PLoS One. 2014; 9(3): e87172.
https://doi.org/10.1371/journal.pone.0087172
PMid:24595145 PMCid:PMC3942308
Lombardi G, et al. Biochemistry of adolescent idiopathic scoliosis. Advances in clinical chemistry. 2011; 54: 165182.
Wai MGC, et al. A review of pinealectomyinduced melatonindeficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. International journal of molecular sciences. 2014; 15(9): 1648416499.
https://doi.org/10.3390/ijms150916484
PMid:25238413 PMCid:PMC4200812
Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. Scientifica. 2012; 2012(1): 152365.
https://doi.org/10.6064/2012/152365
PMid:24278672 PMCid:PMC3820596
Wang S, et al. Expression of Runx2 and type X collagen in vertebral growth plate of patients with adolescent idiopathic scoliosis. Connective tissue research. 2010; 51(3): 188196.
https://doi.org/10.3109/03008200903215590
PMid:20073986
Shen J, et al. Abnormalities associated with congenital scoliosis: a retrospective study of 226 Chinese surgical cases. Spine. 2013; 38(10): 814818.
https://doi.org/10.1097/BRS.0b013e31827ed125
PMid:23197014
Li Z, et al. Vitamin A deficiency induces congenital spinal deformities in rats. PLoS ONE. 2012;7(10): e46565.
https://doi.org/10.1371/journal.pone.0046565
PMid:23071590 PMCid:PMC3465343
Li Z, X Yu,Shen J. Environmental aspects of congenital scoliosis. Environmental Science and Pollution Research. 2015; 22: 57515755.
https://doi.org/10.1007/s11356-015-4144-0
PMid:25628116
Pourquié O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell. 2011; 145(5): 650663.
https://doi.org/10.1016/j.cell.2011.05.011
PMid:21620133 PMCid:PMC3164975
Sparrow DB, et al. A mechanism for geneenvironment interaction in the etiology of congenital scoliosis. Cell. 2012; 149(2): 295306.
https://doi.org/10.1016/j.cell.2012.02.054
PMid:22484060
Man GCW, et al. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. Journal of pineal research. 2011; 50(4): 395402.
https://doi.org/10.1111/j.1600-079X.2011.00857.x
PMid:21480980
Hayes M, et al. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nature communications. 2014; 5(1): 4777.
https://doi.org/10.1038/ncomms5777
PMid:25182715 PMCid:PMC4155517
Grauers A, et al. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. The Spine Journal. 2015; 15(10): 22392246.
https://doi.org/10.1016/j.spinee.2015.05.013
PMid:25987191
Xu E, et al. A genetic variant in GPR126 causing a decreased inclusion of exon 6 is associated with cartilage development in adolescent idiopathic scoliosis population. BioMed research international. 2019; 2019(1): 4678969.
https://doi.org/10.1155/2019/4678969
PMid:30886859 PMCid:PMC6388357
Ogura Y, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. The American Journal of Human Genetics. 2015; 97(2): 337342.
https://doi.org/10.1016/j.ajhg.2015.06.012
PMid:26211971 PMCid:PMC4573260
Giampietro P, et al. An analysis of PAX1 in the development of vertebral malformations. Clinical genetics. 2005; 68(5): 448453.
https://doi.org/10.1111/j.1399-0004.2005.00520.x
PMid:16207213
Safaee MM, Ames CP, Smith JC. Epidemiology and Socioeconomic Trends in Adult Spinal Deformity Care. Neurosurgery. 2020; 87(1): 2532.
https://doi.org/10.1093/neuros/nyz454
PMid:31620794
Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis of ncRNA through deep sequencing techniques. Frontiers in bioengineering and biotechnology. 2015; 3: 77.
https://doi.org/10.3389/fbioe.2015.00077
PMid:26090362 PMCid:PMC4453482
Place RF, Noonan EJ. Noncoding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress and Chaperones. 2014; 19(2): 159172.
https://doi.org/10.1007/s12192-013-0456-5
PMid:24002685 PMCid:PMC3933615
Li T, et al. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget. 2016; 7(8): 8601.
https://doi.org/10.18632/oncotarget.6926
PMid:26788991 PMCid:PMC4890990
Li Z, et al. DNA methylation downregulated mir10b acts as a tumor suppressor in gastric cancer. Gastric cancer. 2015; 18: 4354.
https://doi.org/10.1007/s10120-014-0340-8
PMid:24481854
Wu WK, et al. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis. 2011; 32(3): 247253.
https://doi.org/10.1093/carcin/bgq243
PMid:21081475
Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome biology. 2017; 18: 113.
https://doi.org/10.1186/s13059-017-1348-2
PMid:29084573 PMCid:PMC5663108
Barrett SP , Salzman J. Circular RNAs: analysis, expression and potential functions. Development. 2016; 143(11): 18381847.
https://doi.org/10.1242/dev.128074
PMid:27246710 PMCid:PMC4920157
Yu X, et al. MicroRNA10b induces vascular muscle cell proliferation through Akt pathway by targeting TIP30. Current vascular pharmacology. 2015; 13(5): 679686.
https://doi.org/10.2174/1570161113666150123112751
PMid:25612666
Li Z, et al. RETRACTED: Micro RNA‐379 suppresses osteosarcoma progression by targeting PDK 1. Journal of cellular and molecular medicine. 2017; 21(2): 315323.
https://doi.org/10.1111/jcmm.12966
PMid:27781416 PMCid:PMC5264134
Li Z, et al. Emerging roles of long non‐coding RNAs in neuropathic pain. Cell proliferation. 2019; 52(1): e12528.
https://doi.org/10.1111/cpr.12528
PMid:30362191 PMCid:PMC6430490
Li Z, et al. Long non‐coding RNA s in nucleus pulposus cell function and intervertebral disc degeneration. Cell proliferation. 2018; 51(5): e12483.
https://doi.org/10.1111/cpr.12483
PMid:30039593 PMCid:PMC6528936
Li Z, X Yu, J Shen. Long noncoding RNAs: emerging players in osteosarcoma. Tumor Biology. 2016; 37: 28112816.
https://doi.org/10.1007/s13277-015-4749-4
PMid:26718212
Zheng J, et al. Long nonding RNA UCA1 regulates neural stem cell differentiation by controlling miR1/Hes1 expression. American Journal of Translational Research. 2017; 9(8): 3696.
Yu Y, et al. LINC 00152: a pivotal oncogenic long non‐coding RNA in human cancers. Cell proliferation. 2017; 50(4): e12349.
https://doi.org/10.1111/cpr.12349
PMid:28464433 PMCid:PMC6529135
Zhang J, et al. CRNDE: an important oncogenic long non‐coding RNA in human cancers. Cell proliferation. 2018; 51(3): e12440.
https://doi.org/10.1111/cpr.12440
PMid:29405523 PMCid:PMC6528921
Yu XJ, et al. Long noncoding RNAs and novel inflammatory genes determined by RNA sequencing in human lymphocytes are upregulated in permanent atrial fibrillation. American Journal of Translational Research. 2017; 9(5): 2314.
Wang X, et al. LncRNA‐RP11‐296A18 3/miR‐138/HIF1A pathway regulates the proliferation ECM synthesis of human nucleus pulposus cells (HNPCs). Journal of Cellular Biochemistry. 2017; 118(12): 48624871.
https://doi.org/10.1002/jcb.26166
PMid:28543639
Bochenek G, et al. The large noncoding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Human molecular genetics. 2013; 22(22): 45164527.
https://doi.org/10.1093/hmg/ddt299
PMid:23813974
Li Z, et al. Emerging roles of non‐coding RNAs in scoliosis. Cell proliferation. 2020; 53(2): e12736.
https://doi.org/10.1111/cpr.12736
PMid:31828859 PMCid:PMC7046479
Xie Z, et al. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PloS one. 2013; 8(4): e57502.
https://doi.org/10.1371/journal.pone.0057502
PMid:23560033 PMCid:PMC3613402
Zhu W, et al. Diagnostic value of serum miR182, miR183, miR210, and miR126 levels in patients with earlystage nonsmall cell lung cancer. PloS one. 2016;11(4): e0153046.
https://doi.org/10.1371/journal.pone.0153046
PMid:27093275 PMCid:PMC4836744
Shimizu T, et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. European urology. 2013; 63(6): 10911100.
https://doi.org/10.1016/j.eururo.2012.11.030
PMid:23200812
Yu X, et al. MicroRNA10b promotes nucleus pulposus cell proliferation through RhoCAkt pathway by targeting HOXD10 in intervetebral disc degeneration. PloS one. 2013; 8(12): e83080.
https://doi.org/10.1371/journal.pone.0083080
PMid:24376640 PMCid:PMC3869743
Yamasaki K, et al. Angiogenic microRNA‐210 is present in cells surrounding osteonecrosis. Journal of Orthopaedic Research. 2012; 30(8): 12631270.
https://doi.org/10.1002/jor.22079
PMid:22287106
Chen WK, et al. lnc RNA s: novel players in intervertebral disc degeneration and osteoarthritis. Cell proliferation. 2017; 50(1): e12313.
https://doi.org/10.1111/cpr.12313
PMid:27859817 PMCid:PMC6529103
Chen C, et al. Identification of competing endogenous RNA regulatory networks in vitamin A deficiencyinduced congenital scoliosis by transcriptome sequencing analysis. Cellular Physiology and Biochemistry. 2018; 48(5): 21342146.
https://doi.org/10.1159/000492556
PMid:30110682
Chen C, et al. LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling. Journal of Cellular and Molecular Medicine. 2019; 23(7): 45824591.
https://doi.org/10.1111/jcmm.14355
PMid:31044535 PMCid:PMC6584475
Yu L, et al. Osteoblastic microRNAs in skeletal diseases: biological functions and therapeutic implications. Engineered Regeneration. 2022; 3(3): 241257.
https://doi.org/10.1016/j.engreg.2022.06.002
Zhu A, Y Liu , Y Liu. Identification of key genes and regulatory mechanisms in adult degenerative scoliosis. Journal of Clinical Neuroscience. 2024; 119: 170179.
https://doi.org/10.1016/j.jocn.2023.12.002
PMid:38103507
Zhao H, A Lu, X He. Roles of MicroRNAs in bone destruction of rheumatoid arthritis. Frontiers in Cell and Developmental Biology. 2020; 8: 600867.
https://doi.org/10.3389/fcell.2020.600867
PMid:33330493 PMCid:PMC7710907
Chen C, et al. MicroRNA21: an emerging player in bone diseases. Frontiers in Pharmacology. 2021; 12: 722804.
https://doi.org/10.3389/fphar.2021.722804
PMid:34557095 PMCid:PMC8452984
Zhang J, et al. Aberrant miR‐145-5p/β‐catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. The FASEB Journal. 2018; 32(12): 65376549.
https://doi.org/10.1096/fj.201800281
PMid:29906249
Sato T, et al. Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals. Experimental and Therapeutic Medicine. 2024; 28(5): 416.
https://doi.org/10.3892/etm.2024.12705
PMid:39301254 PMCid:PMC11411403
Liao J, et al. lncRNA H19 mediates BMP9induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget. 2017; 8(32): 53581.
https://doi.org/10.18632/oncotarget.18655
PMid:28881833 PMCid:PMC5581132
Sun H, et al. Long noncoding RNA MEG3 is involved in osteogenic differentiation and bone diseases. Biomedical Reports. 2020; 13(1): 1521.
https://doi.org/10.3892/br.2020.1305
PMid:32494359 PMCid:PMC7257936
Sun D, et al. Advances in epigenetic research of adolescent idiopathic scoliosis and congenital scoliosis. Frontiers in Genetics. 2023; 14: 1211376.
https://doi.org/10.3389/fgene.2023.1211376
PMid:37564871 PMCid:PMC10411889
Yousuf S, et al. Genomewide expression profiling and networking reveals an imperative role of IMFassociated novel CircRNAs as ceRNA in pigs. Cells. 2022; 11(17): 2638.
https://doi.org/10.3390/cells11172638
PMid:36078046 PMCid:PMC9454643
Tong J, et al. Transcriptomic profiling in human decidua of severe preeclampsia detected by RNA sequencing. Journal of cellular biochemistry. 2018; 119(1): 607615.
https://doi.org/10.1002/jcb.26221
PMid:28618048
Zhou J, Y Fan, H Chen. Analyses of long noncoding RNA and mRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model. RNA biology. 2017; 14(12): 18101826.
https://doi.org/10.1080/15476286.2017.1371400
PMid:28854101 PMCid:PMC5731818
SecoCervera M, et al. Small RNAseq analysis of circulating miRNAs to identify phenotypic variability in Friedreich's ataxia patients. Scientific data. 2018; 5(1): 19.
https://doi.org/10.1038/sdata.2018.21
PMid:29509186 PMCid:PMC5839159
Li J, et al. Suv39h1 promotes facet joint chondrocyte proliferation by targeting miR15a/Bcl2 in idiopathic scoliosis patients. Clinical epigenetics. 2019; 11: 113.
https://doi.org/10.1186/s13148-019-0706-1
PMid:31337422 PMCid:PMC6651996
Zhuang Q, et al. Long noncoding RNA lncAIS downregulation in mesenchymal stem cells is implicated in the pathogenesis of adolescent idiopathic scoliosis. Cell Death & Differentiation. 2019; 26(9): 17001715.
https://doi.org/10.1038/s41418-018-0240-2
PMid:30464226 PMCid:PMC6748078
Jiang H, et al. Asymmetric expression of H19 and ADIPOQ in concave/convex paravertebral muscles is associated with severe adolescent idiopathic scoliosis. Molecular Medicine. 2018; 24: 112.
https://doi.org/10.1186/s10020-018-0049-y
PMid:30241458 PMCid:PMC6145194
Ogura Y, et al. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Human molecular genetics. 2017; 26(20): 40864092.
https://doi.org/10.1093/hmg/ddx291
PMid:29016859
GarcíaGiménez JL, et al. Circulating miRNAs as diagnostic biomarkers for adolescent idiopathic scoliosis. Scientific reports. 2018; 8(1): 2646.
https://doi.org/10.1038/s41598-018-21146-x
PMid:29422531 PMCid:PMC5805715
Liu G, et al. Genome‐Wide Analysis of circular RNAs and validation of hsa_circ_0006719 as a potential novel diagnostic biomarker in congenital scoliosis patients. Journal of Cellular and Molecular Medicine. 2020; 24(12): 70157022.
https://doi.org/10.1111/jcmm.15370
PMid:32394619 PMCid:PMC7299707
Cheng JC, et al. Adolescent idiopathic scoliosis. Nature reviews disease primers. 2015; 1(1): 121.
https://doi.org/10.1038/nrdp.2015.63
PMid:27227344
Rodda SJ , AP McMahon. Distinct roles for Hedgehog and canonical Wnt signaling in specification. differentiation and maintenance of osteoblast: progenitors; 2006.
https://doi.org/10.1242/dev.02480
PMid:16854976
Regard JB, et al. Wnt/βcatenin signaling is differentially regulated by Gα proteins and contributes to fibrous dysplasia. Proceedings of the National Academy of Sciences. 2011; 108(50): 2010120106.
https://doi.org/10.1073/pnas.1114656108
PMid:22106277 PMCid:PMC3250124
Wang Z, et al. Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity. Scientific Reports. 2017; 7(1): 40265.
https://doi.org/10.1038/srep40265
PMid:28054655 PMCid:PMC5214167
Vasiliadis ES, et al. Sclerostin and its involvement in the pathogenesis of idiopathic scoliosis. Journal of Clinical Medicine. 2021; 10(22): 5286.
https://doi.org/10.3390/jcm10225286
PMid:34830568 PMCid:PMC8618875
Cisternas P, et al. Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis. Molecular neurobiology. 2014; 49: 574589.
https://doi.org/10.1007/s12035-013-8540-5
PMid:24014138
Kondo N, et al. Intervertebral disc development is regulated by Wnt/βcatenin signaling. Spine. 2011; 36(8): E513E518.
https://doi.org/10.1097/BRS.0b013e3181f52cb5
PMid:21270710 PMCid:PMC3072453
Tamamura Y, et al. Developmental regulation of Wnt/βcatenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. Journal of Biological Chemistry. 2005; 280(19): 1918519195.
https://doi.org/10.1074/jbc.M414275200
PMid:15760903
Acaroglu E, et al. Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine. 2009; 34(18): E659E663.
https://doi.org/10.1097/BRS.0b013e3181a3c7a2
PMid:19680092
Tansey MG, et al. Ca (2+)dependent phosphorylation of myosin light chain kinase decreases the Ca2+ sensitivity of light chain phosphorylation within smooth muscle cells. Journal of Biological Chemistry. 1994; 269(13): 99129920.
https://doi.org/10.1016/S0021-9258(17)36969-7
Nishizawa Y, et al. Calcium/calmodulinmediated action of calcitonin on lipid metabolism in rats. The Journal of clinical investigation. 1988; 82(4): 11651172.
https://doi.org/10.1172/JCI113713
PMid:2844851 PMCid:PMC442666
Gooi J, et al. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone. 2010; 46(6): 14861497.
https://doi.org/10.1016/j.bone.2010.02.018
PMid:20188226
Zhou R, et al. Calcitonin generelated peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Molecular Medicine Reports. 2016; 13(6): 46894696.
https://doi.org/10.3892/mmr.2016.5117
PMid:27082317 PMCid:PMC4878536
Tu X, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012; 50(1): 209217.
https://doi.org/10.1016/j.bone.2011.10.025
PMid:22075208 PMCid:PMC3246572
Xu E, et al. Asymmetric expression of GPR126 in the convex/concave side of the spine is associated with spinal skeletal malformation in adolescent idiopathic scoliosis population. European Spine Journal. 2019; 28: 19771986.
https://doi.org/10.1007/s00586-019-06001-5
PMid:31079250
Baron R , M Kneissel. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nature medicine. 2013; 19(2): 179192.
https://doi.org/10.1038/nm.3074
PMid:23389618
Karner CM , F Long. Wnt signaling and cellular metabolism in osteoblasts. Cellular and Molecular Life Sciences. 2017; 74(9): 16491657.
https://doi.org/10.1007/s00018-016-2425-5
PMid:27888287 PMCid:PMC5380548
Jiang X, et al. Advances in genetic factors of adolescent idiopathic scoliosis: a bibliometric analysis. Frontiers in Pediatrics. 2024; 11: 1301137.
https://doi.org/10.3389/fped.2023.1301137
PMid:38322243 PMCid:PMC10845672
Gaur T, lengner cJ, Hovhannisyan H, Bhat ra, Bodine PV, Komm BS, ET AL. canonical WnT signaling promotes osteogenesis by directly stimulating runx2 gene expression. J Biol chem. 2005; 280: 3313233140.
https://doi.org/10.1074/jbc.M500608200
PMid:16043491
de Boer J, et al. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone. 2004; 34(5): 818826.
https://doi.org/10.1016/j.bone.2004.01.016
PMid:15121013
Nikolova S, et al. Role of the IL‐6 Gene in the Etiopathogenesis of Idiopathic Scoliosis. Analytical Cellular Pathology. 2015; 2015(1): 621893.
https://doi.org/10.1155/2015/621893
PMid:26199858 PMCid:PMC4493265
Nikolova ST, et al. Association between IL6 and MMP3 common genetic polymorphisms and idiopathic scoliosis in Bulgarian patients: a casecontrol study. Spine. 2016; 41(9): 785791.
https://doi.org/10.1097/BRS.0000000000001360
PMid:26656061
Zhou S, et al. A singlenucleotide polymorphism rs708567 in the IL17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a casecontrol study. BMC musculoskeletal disorders. 2012; 13: 16.
https://doi.org/10.1186/1471-2474-13-181
PMid:22999050 PMCid:PMC3517504
Zheng X, Z Ma ,X Gu. Plasma levels of tumor necrosis factor‑α in adolescent idiopathic scoliosis patients serve as a predictor for the incidence of early postoperative cognitive dysfunction following orthopedic surgery. Experimental and therapeutic medicine. 2015; 9(4): 14431447.
https://doi.org/10.3892/etm.2015.2241
PMid:25780449 PMCid:PMC4353783
Sobhan MR, et al. Association of the IL6174G> C (rs1800795) polymorphism with adolescent idiopathic scoliosis: evidence from a casecontrol study and metaanalysis. Revista Brasileira de Ortopedia. 2020; 55: 1726.
Bisson DG, et al. Toll‐like receptor involvement in adolescent scoliotic facet joint degeneration. Journal of cellular and molecular medicine. 2020; 24(19): 1135511365.
https://doi.org/10.1111/jcmm.15733
PMid:32853438 PMCid:PMC7576299
Bertelè L, et al. Relationship between inflammatory laboratory parameters and severity of adolescent idiopathic scoliosis: A pilot study. Journal of Back and Musculoskeletal Rehabilitation. 2024; (Preprint): 112.
https://doi.org/10.3233/BMR-230186
PMid:38306021 PMCid:PMC11307059
Petrosyan E, et al. Biological principles of adult degenerative scoliosis. Trends in molecular medicine. 2023; 29(9): 740752.
https://doi.org/10.1016/j.molmed.2023.05.012
PMid:37349248
Huang X, et al. Risk factors and treatment strategies for adjacent segment disease following spinal fusion. Molecular Medicine Reports. 2024; 31(2): 33.
https://doi.org/10.3892/mmr.2024.13398
PMid:39575466 PMCid:PMC11605282
Liang T, et al. Constructing intervertebral disc degeneration animal model: A review of current models. Frontiers in surgery. 2023; 9: 1089244.
https://doi.org/10.3389/fsurg.2022.1089244
PMid:36969323 PMCid:PMC10036602
Delcuve GP, M Rastegar,JR Davie. Epigenetic control. Journal of cellular physiology. 2009; 219(2): 243250.
https://doi.org/10.1002/jcp.21678
PMid:19127539
Laird PW. Cancer epigenetics. Human molecular genetics. 2005; 14(suppl_1): R65R76.
https://doi.org/10.1093/hmg/ddi113
PMid:15809275
Zhang L, Q Lu ,C Chang. Epigenetics in health and disease. Epigenetics in allergy and autoimmunity. 2020: 355.
https://doi.org/10.1007/978-981-15-3449-2
Peng Y, et al. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis. Chinese medical journal. 2020; 133(4): 483493.
https://doi.org/10.1097/CM9.0000000000000652
PMid:31972723 PMCid:PMC7046244
Clapier CR , BR Cairns. The biology of chromatin remodeling complexes. Annual review of biochemistry. 2009; 78(1): 273304.
https://doi.org/10.1146/annurev.biochem.77.062706.153223
PMid:19355820
Kitagawa H, et al. Retracted: The chromatinremodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell. 2003; 113(7): 905917.
https://doi.org/10.1016/S0092-8674(03)00436-7
PMid:12837248
Denslow S, P Wade. The human Mi2/NuRD complex and gene regulation. Oncogene. 2007; 26(37): 54335438.
https://doi.org/10.1038/sj.onc.1210611
PMid:17694084
Szyf M. The dynamic epigenome and its implications in toxicology. Toxicological Sciences. 2007 Nov 1;100(1):723.
https://doi.org/10.1093/toxsci/kfm177
PMid:17675334
Miranda TB , PA Jones. DNA methylation: the nuts and bolts of repression. Journal of cellular physiology. 2007; 213(2): 384390.
https://doi.org/10.1002/jcp.21224
PMid:17708532
Gerdhem P, et al. Serum level of cartilage oligomeric matrix protein is lower in children with idiopathic scoliosis than in nonscoliotic controls. European Spine Journal. 2015; 24: 256261.
https://doi.org/10.1007/s00586-014-3691-2
PMid:25427671
Mao Sh, et al. Quantitative evaluation of the relationship between COMP promoter methylation and the susceptibility and curve progression of adolescent idiopathic scoliosis. European Spine Journal. 2018; 27: 272277.
https://doi.org/10.1007/s00586-017-5309-y
PMid:28951969
Shi B, et al. Abnormal PITX1 gene methylation in adolescent idiopathic scoliosis: a pilot study. BMC Musculoskeletal Disorders. 2018; 19: 16.
https://doi.org/10.1186/s12891-018-2054-2
PMid:29743058 PMCid:PMC5941792
Logan M, CJ Tabin. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999; 283(5408): 17361739.
https://doi.org/10.1126/science.283.5408.1736
PMid:10073939
Alvarado DM, et al. Pitx1 haploinsufficiency causes clubfoot in humans and a clubfootlike phenotype in mice. Human molecular genetics. 2011; 20(20): 39433952.
https://doi.org/10.1093/hmg/ddr313
PMid:21775501 PMCid:PMC3177645
Pandey SN, et al. Conditional overexpression of PITX1 causes skeletal muscle dystrophy in mice. Biology open. 2012; 1(7): 629639.
https://doi.org/10.1242/bio.20121305
PMid:23125914 PMCid:PMC3486706
Wu Y, et al. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis. Journal of Translational Medicine. 2020;18: 110.
https://doi.org/10.1186/s12967-020-02367-z
PMid:32448279 PMCid:PMC7245753
TajulArifin K, et al. Identification and analysis of chromodomaincontaining proteins encoded in the mouse transcriptome. Genome research. 2003; 13(6b): 14161429.
https://doi.org/10.1101/gr.1015703
PMid:12819141 PMCid:PMC403676
Desh H, et al. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion. Archives of oral biology. 2014; 59(6): 601607.
https://doi.org/10.1016/j.archoralbio.2014.03.005
PMid:24698832 PMCid:PMC4049538
Meng Y, et al. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis. EBioMedicine. 2018; 36: 489496.
https://doi.org/10.1016/j.ebiom.2018.09.014
PMid:30241917 PMCid:PMC6197569
Roughley PJ, et al. The role of hyaluronan produced by Has2 gene expression in development of the spine. Spine. 2011; 36(14): E914E920.
https://doi.org/10.1097/BRS.0b013e3181f1e84f
PMid:21224752
Shi B, et al. Quantitation analysis of PCDH10 methylation in adolescent idiopathic scoliosis using pyrosequencing study. Spine. 2020; 45(7): E373E378.
https://doi.org/10.1097/BRS.0000000000003292
PMid:31651684
Shi D, VV Murty, W Gu. PCDH10, a novel p53 transcriptional target in regulating cell migration. Cell Cycle. 2015; 14(6): 857866.
https://doi.org/10.1080/15384101.2015.1004935
PMid:25590240 PMCid:PMC4615063
Chmielewska M, et al. Methylation of estrogen receptor 2 (ESR2) in deep paravertebral muscles and its association with idiopathic scoliosis. Scientific Reports. 2020; 10(1): 22331.
https://doi.org/10.1038/s41598-020-78454-4
PMid:33339862 PMCid:PMC7749113
Janusz P, et al. Methylation level of the regulatory regions of the estrogen receptor type 1 gene in paravertebral muscles of girls with idiopathic scoliosis. in Research into Spinal Deformities 9. 2021; Press: 254254.
https://doi.org/10.3233/SHTI210484
OtonGonzalez L, et al. Genetics and epigenetics of bone remodeling and metabolic bone diseases. International Journal of Molecular Sciences. 2022; 23(3): 1500.
https://doi.org/10.3390/ijms23031500
PMid:35163424 PMCid:PMC8836080
Kazezian Z, K Joyce, A Pandit. The role of hyaluronic acid in intervertebral disc regeneration. Applied Sciences. 2020; 10(18): 6257.
https://doi.org/10.3390/app10186257
Simony A, et al. Concordance rates of adolescent idiopathic scoliosis in a Danish twin population. Spine. 2016; 41(19): 15031507.
https://doi.org/10.1097/BRS.0000000000001681
PMid:27163371
Liu G, et al. Wholegenome methylation analysis of phenotype discordant monozygotic twins reveals novel epigenetic perturbation contributing to the pathogenesis of adolescent idiopathic scoliosis. Frontiers in bioengineering and biotechnology. 2019; 7: 364.
https://doi.org/10.3389/fbioe.2019.00364
PMid:31921798 PMCid:PMC6914696
Zhang Y, T Pizzute, M Pei. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell and tissue research. 2014; 358(3): 633649.
https://doi.org/10.1007/s00441-014-2010-x
PMid:25312291 PMCid:PMC4234693
Iezaki T, et al. The MAPK Erk5 is necessary for proper skeletogenesis involving a SmurfSmadSox9 molecular axis. Development. 2018; 145(14): dev164004.
https://doi.org/10.1242/dev.164004
PMid:29986870
Liu G, et al. Wholegenome methylation analysis reveals novel epigenetic perturbations of congenital scoliosis. Molecular TherapyNucleic Acids. 2021; 23: 12811287.
https://doi.org/10.1016/j.omtn.2021.02.002
PMid:33717649 PMCid:PMC7907230
Carry PM, et al. Severity of idiopathic scoliosis is associated with differential methylation: An epigenomewide association study of monozygotic twins with idiopathic scoliosis. Genes. 2021; 12(08): 1191.
https://doi.org/10.3390/genes12081191
PMid:34440365 PMCid:PMC8391702
Mao S, et al. Association between genetic determinants of peak height velocity during puberty and predisposition to adolescent idiopathic scoliosis. Spine. 2013; 38(12): 10341039.
https://doi.org/10.1097/BRS.0b013e318287fcfd
PMid:23354108
Harada GK, et al. Imaging in Spine Surgery: Current Concepts and Future Directions. Spine Surg Relat Res. 2020; 4(2): 99110.
https://doi.org/10.22603/ssrr.2020-0011
PMid:32405554 PMCid:PMC7217684
Isherwood I. Sir Godfrey Hounsfield. Radiology. 2005; 234(3): 975976.
https://doi.org/10.1148/radiol.2343042584
Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. nature. 1973 Mar 16;242(5394):1901.
https://doi.org/10.1038/242190a0
Cobb J. Outline for the study. of scoliosis: Instructional course lecture; 1948.
Kalender WA. Computed tomography. fundamentals, system technology, image quality, applications: John Wiley & Sons; 2011.
Tins B, V CassarPullicino. Controversies in "clearing" trauma to the cervical spine in Seminars in Ultrasound, CT and MRI. Elsevier. 2007; 28(2): 94100.
https://doi.org/10.1053/j.sult.2007.01.005
PMid:17432763
Modic MT, JS Ross. Lumbar degenerative disk disease. Radiology. 2007; 245(1): 4361.
https://doi.org/10.1148/radiol.2451051706
PMid:17885180
Boden SD, et al. Abnormal magneticresonance scans of the lumbar spine in asymptomatic subjects A prospective investigation. JBJS. 1990; 72(3): 403408.
https://doi.org/10.2106/00004623-199072030-00013
Lightstone DF, et al. Reliability of biomechanical mensuration methods of the sagittal cervical spine on radiography used in clinical practice: A systematic review of literature. medRxiv. 2025: 2025.05. 06.25327135.
https://doi.org/10.1101/2025.05.06.25327135
Illés T, S Somoskeöy. The EOS™ imaging system and its uses in daily orthopaedic practice. International orthopaedics. 2012; 36: 13251331.
https://doi.org/10.1007/s00264-012-1512-y
PMid:22371113 PMCid:PMC3385897
Drerup B, E Hierholzer. Evaluation of frontal radiographs of scoliotic spines-Part I measurement of position and orientation of vertebrae and assessment of clinical shape parameters. Journal of biomechanics. 1992; 25(11): 13571362.
https://doi.org/10.1016/0021-9290(92)90291-8
PMid:1400537
Wang Q, et al. Reliability and validity study of clinical ultrasound imaging on lateral curvature of adolescent idiopathic scoliosis. PloS one. 2015; 10(8): e0135264.
https://doi.org/10.1371/journal.pone.0135264
PMid:26266802 PMCid:PMC4534204
Kwan CK, et al. Threedimensional (3D) ultrasound imaging for quantitative assessment of frontal cobb angles in patients with idiopathic scoliosis-a systematic review and metaanalysis. BMC Musculoskeletal Disorders. 2025; 26(1): 114.
https://doi.org/10.1186/s12891-025-08467-5
PMid:40045341 PMCid:PMC11881507
Leardini A, et al. Human movement analysis using stereophotogrammetry: Part 3 Soft tissue artifact assessment and compensation. Gait & posture. 2005; 21(2): 212225.
https://doi.org/10.1016/j.gaitpost.2004.05.002
PMid:15639400
Janicki JA, B Alman. Scoliosis: Review of diagnosis and treatment. Paediatr Child Health. 2007; 12(9): 7716.
https://doi.org/10.1093/pch/12.9.771
PMid:19030463 PMCid:PMC2532872
Mahaudens P, JL Thonnard, C Detrembleur. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. The Spine Journal. 2005; 5(4): 427433.
https://doi.org/10.1016/j.spinee.2004.11.014
PMid:15996612
Chen PQ, et al. The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clinical Biomechanics. 1998;13(1, Supplement 1): S52S58.
https://doi.org/10.1016/S0268-0033(97)00075-2
PMid:11430791
Syczewska M, et al. Influence of the structural deformity of the spine on the gait pathology in scoliotic patients. Gait & Posture. 2012; 35(2): 209213.
https://doi.org/10.1016/j.gaitpost.2011.09.008
PMid:21978792
Kim HJ, et al. The risk assessment of a fall in patients with lumbar spinal stenosis. Spine. 2011; 36(9): E588E592.
https://doi.org/10.1097/BRS.0b013e3181f92d8e
PMid:21242866
Lee HR, et al. functional mobility tests for evaluation of functionalities in patients with adult spinal deformity. BMC Musculoskeletal Disorders. 2022; 23(1): 391.
https://doi.org/10.1186/s12891-022-05342-5
PMid:35477445 PMCid:PMC9044638
Ha KY, et al. Clinical relevance of the SRSSchwab classification for degenerative lumbar scoliosis. Spine. 2016; 41(5): E282E288.
https://doi.org/10.1097/BRS.0000000000001229
PMid:26571177
Tiedemann A, et al. The comparative ability of eight functional mobility tests for predicting falls in communitydwelling older people. Age and ageing. 2008; 37(4): 430435.
https://doi.org/10.1093/ageing/afn100
PMid:18487264
Kristensen MT, NB Foss, H Kehlet. Timed "up & go" test as a predictor of falls within 6 months after hip fracture surgery. Physical therapy. 2007; 87(1): 2430.
https://doi.org/10.2522/ptj.20050271
PMid:17142643
Badii M, et al. Comparison of Lifts Versus Tape Measure in Determining Leg Length Discrepancy. The Journal of Rheumatology. 2014; 41(8): 16891694.
https://doi.org/10.3899/jrheum.131089
PMid:25028369
Harris I, A Hatfield, J Walton. Assessing leg length discrepancy after femoral fracture: clinical examination or computed tomography? ANZ journal of surgery. 2005; 75(5): 319321.
https://doi.org/10.1111/j.1445-2197.2005.03349.x
PMid:15932444
Lawrence D. Chiropractic concepts of the short leg: a critical review. Journal of manipulative and physiological therapeutics. 1985; 8(3): 157161.
Reamy BV, JB Slakey. Adolescent idiopathic scoliosis: review and current concepts. American family physician. 2001; 64(1): 111117.
Jiang WW, et al. Patterns of coronal curve changes in forward bending posture: a 3D ultrasound study of adolescent idiopathic scoliosis patients. European Spine Journal. 2018; 27(9): 21392147.
https://doi.org/10.1007/s00586-018-5646-5
PMid:29943198
Izatt MT, GR Bateman, CJ Adam. Evaluation of the iPhone with an acrylic sleeve versus the Scoliometer for rib hump measurement in scoliosis. Scoliosis. 2012; 7(1): 14.
https://doi.org/10.1186/1748-7161-7-14
PMid:22846346 PMCid:PMC3479427
Bunnell WP. An objective criterion for scoliosis screening. J Bone Joint Surg Am. 1984; 66(9): 13817.
https://doi.org/10.2106/00004623-198466090-00010
Bonagamba GH, DM Coelho, AS Oliveira. Inter and intrarater reliability of the scoliometer. Rev Bras Fisioter. 2010; 14(5): 4328.
https://doi.org/10.1590/S1413-35552010005000025
PMid:21049239
Negrini A, et al. Spinal Coronal and Sagittal Balance in 584 Healthy Individuals During Growth: Normal Plumb Line Values and Their Correlation With Radiographic Measurements. Phys Ther. 2019; 99(12): 17121718.
https://doi.org/10.1093/ptj/pzz123
PMid:31504925
Shamim A, T Tanwar, Z Veqar. An Overview of Cervical Spine Posture Assessment Methods. SN Comprehensive Clinical Medicine. 2023; 5(1): 225.
https://doi.org/10.1007/s42399-023-01559-0
Imran AAZ, et al. FullyAutomated Analysis of Scoliosis from Spinal XRay Images. in 2020 IEEE 33rd International Symposium on ComputerBased Medical Systems (CBMS). 2020; :114119.
https://doi.org/10.1109/CBMS49503.2020.00029
Chowanska J, et al. School screening for scoliosis: can surface topography replace examination with scoliometer? Scoliosis, 2012. 7(1): p. 9.
https://doi.org/10.1186/1748-7161-7-9
PMid:22472020 PMCid:PMC3349618
Xiao B, et al. Where should Scoliometer and EOS Imaging be Applied when Evaluating Spinal Rotation in Adolescent Idiopathic Scoliosis A Preliminary Study with Reference to CT Images. Global Spine J. 2024;14(2): 577582.
https://doi.org/10.1177/21925682221116824
PMid:35929422 PMCid:PMC10802522
Wang J, et al. Measurement of scoliosis Cobb angle by end vertebra tilt angle method. J Orthop Surg Res. 2018; 13(1): 223.
https://doi.org/10.1186/s13018-018-0928-5
PMid:30180899 PMCid:PMC6124002
Porto AB, VHA Okazaki. Procedures of assessment on the quantification of thoracic kyphosis and lumbar lordosis by radiography and photogrammetry: A literature review. J Bodyw Mov Ther. 2017; 21(4): 986994.
https://doi.org/10.1016/j.jbmt.2017.01.008
PMid:29037657
Ferguson AB. The study and treatment of scoliosis. South Med J. 1930; 23(2): 116120.
https://doi.org/10.1097/00007611-193002000-00007
Waldt S, A Gersing, M Brügel. Measurements and classifications in spine imaging in Seminars in musculoskeletal radiology. Thieme Medical Publishers. 2014;18(3):219227.
https://doi.org/10.1055/s-0034-1375565
PMid:24896739
Risser JC. The iliac apophysis: an invaluable sign in the management of scoliosis. Clinical Orthopaedics and Related Research®. 1958; 11: 111119.
Nash Jr, JH MOE. A study of vertebral rotation. JBJS. 1969; 51(2): 223229.
https://doi.org/10.2106/00004623-196951020-00002
Dubousset J, et al. [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with lowdose radiation and the standing position: the EOS system]. Bull Acad Natl Med. 2005; 189(2): 28797.
Illés T, S Somoskeöy,. The EOS™ imaging system and its uses in daily orthopaedic practice. Int Orthop. 2012; 36(7): 132531.
https://doi.org/10.1007/s00264-012-1512-y
PMid:22371113 PMCid:PMC3385897
Mehta B, et al. NonInvasive Assessment of Back Surface Topography: Technologies, Techniques and Clinical Utility. Sensors (Basel). 2023; 23(20):8485.
https://doi.org/10.3390/s23208485
PMid:37896577 PMCid:PMC10610923
Smith JS, et al. Clinical and radiographic evaluation of the adult spinal deformity patient. Neurosurgery Clinics. 2013; 24(2): 143156.
https://doi.org/10.1016/j.nec.2012.12.009
PMid:23561553
Knott P, et al. Multicenter Comparison of 3D Spinal Measurements Using Surface Topography With Those From Conventional Radiography. Spine Deform. 2016; 4(2): 98103.
https://doi.org/10.1016/j.jspd.2015.08.008
PMid:27927552
Belli G, et al. Relation between Photogrammetry and Spinal Mouse for Sagittal Imbalance Assessment in Adolescents with Thoracic Kyphosis. J Funct Morphol Kinesiol. 2023; 8(2):68.
https://doi.org/10.3390/jfmk8020068
PMid:37218864 PMCid:PMC10204426
Liu Z, et al. Automatic spinal curvature measurement on ultrasound spine images using Faster RCNN. in 2021 IEEE International Ultrasonics Symposium (IUS). 2021; :14.
https://doi.org/10.1109/IUS52206.2021.9593343
Suzuki S, et al. Ultrasound measurement of vertebral rotation in idiopathic scoliosis. The Journal of Bone & Joint Surgery British Volume. 1989; 71B(2): 252255.
https://doi.org/10.1302/0301-620X.71B2.2647754
PMid:2647754
Ungi T, et al. Spinal Curvature Measurement by Tracked Ultrasound Snapshots. Ultrasound in Medicine & Biology. 2014; 40(2): 447454.
https://doi.org/10.1016/j.ultrasmedbio.2013.09.021
PMid:24268452
Chen W, et al. Reliability of assessing the coronal curvature of children with scoliosis by using ultrasound images. J Child Orthop. 2013; 7(6): 5219.
https://doi.org/10.1007/s11832-013-0539-y
PMid:24432116 PMCid:PMC3886351
Brink RC, et al. A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis. Spine J. 2018; 18(6): 979985.
https://doi.org/10.1016/j.spinee.2017.10.012
PMid:29056566
Li M, et al. Could clinical ultrasound improve the fitting of spinal orthosis for the patients with AIS? European Spine Journal. 2012; 21(10): 19261935.
https://doi.org/10.1007/s00586-012-2273-4
PMid:22447408 PMCid:PMC3463698
Kumar S, et al. A Review of 3D Modalities Used for the Diagnosis of Scoliosis. Tomography. 2024; 10(8): 11921204.
https://doi.org/10.3390/tomography10080090
PMid:39195725 PMCid:PMC11360202
Gennisson JL, et al. Ultrasound elastography: principles and techniques. Diagnostic and interventional imaging. 2013; 94(5): 487495.
https://doi.org/10.1016/j.diii.2013.01.022
PMid:23619292
Dickinson R, C Hill. An ultrasonic method of analyzing tissue motion in BRITISH JOURNAL OF RADIOLOGY . BRITISH INST RADIOLOGY 36 PORTLAND PLACE, LONDON, ENGLAND W1N 4AT. 1980; 53(630): 626627.
Dickinson R, C Hill. Measurement of soft tissue motion using correlation between Ascans. Ultrasound in medicine & biology. 1982; 8(3): 263271.
https://doi.org/10.1016/0301-5629(82)90032-1
PMid:7101574
Shiina T, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound in medicine & biology. 2015; 41(5): 11261147.
https://doi.org/10.1016/j.ultrasmedbio.2015.03.009
PMid:25805059
Garra BS. Elastography: history, principles, and technique comparison. Abdominal imaging. 2015; 40: 680697.
https://doi.org/10.1007/s00261-014-0305-8
PMid:25637125
de Reuver S, et al. Ultrasound Shear Wave Elastography of the Intervertebral Disc and Idiopathic Scoliosis: A Systematic Review. Ultrasound Med Biol. 2022; 48(5): 721729.
https://doi.org/10.1016/j.ultrasmedbio.2022.01.014
PMid:35232608
Ungi T, et al. Automatic Spine Ultrasound Segmentation for Scoliosis Visualization and Measurement. IEEE Transactions on Biomedical Engineering. 2020; 67(11): 32343241.
https://doi.org/10.1109/TBME.2020.2980540
PMid:32167884 PMCid:PMC7654705
Furlanetto TS, et al. Photogrammetry as a tool for the postural evaluation of the spine: A systematic review. World journal of orthopedics. 2016; 7(2): 136.
https://doi.org/10.5312/wjo.v7.i2.136
PMid:26925386 PMCid:PMC4757659
de Albuquerque P, et al. Concordance and Reliability of Photogrammetric Protocols for Measuring the Cervical Lordosis Angle: A Systematic Review of the Literature. J Manipulative Physiol Ther. 2018 41(1): 7180.
https://doi.org/10.1016/j.jmpt.2017.08.004
PMid:29366490
Ruivo RM, P PezaratCorreia, AI Carita. Intrarater and interrater reliability of photographic measurement of upperbody standing posture of adolescents. J Manipulative Physiol Ther. 2015; 38(1): 7480.
https://doi.org/10.1016/j.jmpt.2014.10.009
PMid:25467608
Salahzadeh Z, et al. Assessment of forward head posture in females: observational and photogrammetry methods. J Back Musculoskelet Rehabil. 2014; 27(2): 1319.
https://doi.org/10.3233/BMR-130426
PMid:23963268
Skalli W, et al. Importance of pelvic compensation in posture and motion after posterior spinal fusion using CD instrumentation for idiopathic scoliosis. Spine. 2006; 31(12): E359E366.
https://doi.org/10.1097/01.brs.0000219402.01636.87
PMid:16721280
Diebo BG, et al. From static spinal alignment to dynamic body balance: utilizing motion analysis in spinal deformity surgery. JBJS reviews. 2018; 6(7): e3.
https://doi.org/10.2106/JBJS.RVW.17.00189
PMid:29994800
Yeung KH, et al. Accuracy on the preoperative assessment of patients with adolescent idiopathic scoliosis using biplanar lowdose stereoradiography: a comparison with computed tomography. BMC Musculoskelet Disord. 2020; 21(1): 558.
https://doi.org/10.1186/s12891-020-03561-2
PMid:32811481 PMCid:PMC7433123
Girdler S, et al. Emerging Techniques in Diagnostic Imaging for Idiopathic Scoliosis in Children and Adolescents: A Review of the Literature. World Neurosurg. 2020; 136: 128135.
https://doi.org/10.1016/j.wneu.2020.01.043
PMid:31954891
Lee MC, M Solomito, A Patel. Supine magnetic resonance imaging Cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine. 2013; 38(11): E656E661.
https://doi.org/10.1097/BRS.0b013e31828d255d
PMid:23429689
Shi B, et al. How Does the Supine MRI Correlate With Standing Radiographs of Different Curve Severity in Adolescent Idiopathic Scoliosis? Spine (Phila Pa 1976). 2015; 40(15): 120612.
https://doi.org/10.1097/BRS.0000000000000927
PMid:26222662
Murgai RR, et al. Limited Sequence MRIs for Early Onset Scoliosis Patients Detected 100% of Neural Axis Abnormalities While Reducing MRI Time by 68. Spine (Phila Pa 1976). 2019; 44(12): 866871.
https://doi.org/10.1097/BRS.0000000000002966
PMid:30540716
Spampinato MV, et al. Nonsedated fast spine magnetic resonance imaging in pediatric patients. Pediatr Radiol. 2023; 53(12): 24782489.
https://doi.org/10.1007/s00247-023-05760-0
PMid:37718373
Hirsch FW, et al. Realtime magnetic resonance imaging in pediatric radiology new approach to movement and moving children. Pediatr Radiol. 2021; 51(5): 840846.
https://doi.org/10.1007/s00247-020-04828-5
PMid:33566125 PMCid:PMC8055638
Hirsch FW, et al. Realtime MRI: a new tool of radiologic imaging in small children. Eur J Pediatr. 2023; 182(8): 34053417.
https://doi.org/10.1007/s00431-023-04996-0
PMid:37249681 PMCid:PMC10460313
Roth C, et al. As fast as an Xray: realtime magnetic resonance imaging for diagnosis of idiopathic scoliosis in children and adolescents. Pediatric Radiology. 2024; 54(7): 11681179.
https://doi.org/10.1007/s00247-024-05919-3
PMid:38687346 PMCid:PMC11182802
Ozturk C, et al. The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. Int Orthop. 2010; 34(4): 5436.
https://doi.org/10.1007/s00264-009-0817-y
PMid:19506867 PMCid:PMC2903144
Davids JR, E Chamberlin, DW Blackhurst. Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2004; 86(10): 218795.
https://doi.org/10.2106/00004623-200410000-00009
PMid:15466727
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.





