Exploring the Intersection of Diabetes and Musculoskeletal Health
Keywords:
Diabetes; Orthopedic; Rotator Cuff Tear; Muscle Atrophy; Frozen Shoulder; Osteoarthritis; AGEs; Achilles Tendons; Tendon Healing; Muscle Atrophy; Rheumatoid ArthritisAbstract
Diabetes presents a significant health challenge worldwide, with profound implications extending beyond glycemic control to impact various bodily systems. This review explores the intricate relationship between diabetes and musculoskeletal disorders, shedding light on their epidemiology, pathophysiology, and clinical implications. Individuals with diabetes face a heightened risk of developing musculoskeletal conditions, particularly tendon disorders such as adhesive capsulitis rozen shoulder, rotator cuff tears, muscle atrophy, osteoarthritis and diabetic hand syndrome. Mechanisms underlying these disorders include inflammation, glycation, and impaired tendon homeostasis, exacerbated by factors like insulin resistance and oxidative stress. Furthermore, diabetes poses challenges in orthopedic surgery, leading to increased rates of surgical complications and poorer outcomes. Understanding the interplay between diabetes and musculoskeletal health is crucial for developing targeted interventions aimed at optimizing patient care and outcomes in this population.
References
Association AD. Diagnosis and classification of diabetes mellitus. Diabetes care. 2010; 33(Supplement_1): S62-S69.
https://doi.org/10.2337/dc10-S062
PMid:20042775 PMCid:PMC2797383
Struyf F, Mertens MG, Navarro-Ledesma S. Causes of shoulder dysfunction in diabetic patients: a review of literature. International journal of environmental research and public health. 2022; 19(10): 6228.
https://doi.org/10.3390/ijerph19106228
PMid:35627764 PMCid:PMC9140829
Ranger TA, et al. Is there an association between tendinopathy and diabetes mellitus A systematic review with meta-analysis. British journal of sports medicine. 2016; 50(16): 982-989.
https://doi.org/10.1136/bjsports-2015-094735
PMid:26598716
Lui P. Tendinopathy in diabetes mellitus patients-epidemiology, pathogenesis, and management. Scandinavian journal of medicine & science in sports. 2017; 27(8): 776-787.
https://doi.org/10.1111/sms.12824
PMid:28106286
Baskerville R et al. Tendinopathy in type 2 diabetes: a condition between specialties . British Journal of General Practice. 2018; 68(677): 593-594.
https://doi.org/10.3399/bjgp18X700169
PMid:30498162 PMCid:PMC6255239
Hopkins C, et al. Critical review on the socio-economic impact of tendinopathy. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology. 2016; 4: 9-20.
https://doi.org/10.1016/j.asmart.2016.01.002
PMid:29264258 PMCid:PMC5730665
WH O. Global report on diabetes. Isbn: Organization WH WHO Global report on diabetes; 2016.
Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical therapy. 2008; 88(11): 1322-1335.
https://doi.org/10.2522/ptj.20080008
PMid:18801863 PMCid:PMC2579903
Molsted S, Tribler J, Snorgaard O. Musculoskeletal pain in patients with type 2 diabetes. Diabetes research and clinical practice. 2012; 96(2): 135-140.
https://doi.org/10.1016/j.diabres.2011.12.022
PMid:22244365
Laslett L, et al. Musculoskeletal morbidity: the growing burden of shoulder pain and disability and poor quality of life in diabetic outpatients. Clin Exp Rheumatol. 2007; 25(3): 422-9.
Kiani J, et al. Prevalence and risk factors of five most common upper extremity disorders in diabetics. J Res Health Sci. 2014; 14(1): 92-5.
Cole A, et al. Is diabetes associated with shoulder pain or stiffness Results from a population based study. The Journal of rheumatology. 2009; 36(2): 371-377.
https://doi.org/10.3899/jrheum.080349
PMid:19012358
Ko JY, Wang FS. Rotator cuff lesions with shoulder stiffness: updated pathomechanisms and management. Chang Gung Med J. 2011; 34(4): 331-340.
Lebiedz-Odrobina D, Kay J. Rheumatic manifestations of diabetes mellitus. Rheumatic Disease Clinics. 2010; 36(4): 681-699.
https://doi.org/10.1016/j.rdc.2010.09.008
PMid:21092846
Boivin GP, et al. Biomechanical properties and histology of db/db diabetic mouse Achilles tendon. Muscles, ligaments and tendons journal. 2014; 4(3): 280.
https://doi.org/10.32098/mltj.03.2014.03
PMid:25489543 PMCid:PMC4241416
Kaviratne M, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-β independent. The Journal of Immunology. 2004; 173(6): 4020-4029.
https://doi.org/10.4049/jimmunol.173.6.4020
PMid:15356151
Spite M,Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell metabolism. 2014; 19(1): 21-36.
https://doi.org/10.1016/j.cmet.2013.10.006
PMid:24239568 PMCid:PMC3947989
Sugimoto R, et al. Effect of IL-4 and IL-13 on collagen production in cultured LI90 human hepatic stellate cells. Liver International. 2005; 25(2): 420-428.
https://doi.org/10.1111/j.1478-3231.2005.01087.x
PMid:15780068
Welty FK, Alfaddagh A, Elajami TK. Targeting inflammation in metabolic syndrome. Translational research. 2016; 167(1):257-280.
https://doi.org/10.1016/j.trsl.2015.06.017
PMid:26207884 PMCid:PMC6800061
Juel NG, et al. Very high prevalence of frozen shoulder in patients with type 1 diabetes of≥ 45 years' duration: the dialong shoulder study. Archives of physical medicine and rehabilitation. 2017; 98(8):1551-1559.
https://doi.org/10.1016/j.apmr.2017.01.020
PMid:28219686
Chan JH, et al. The relationship between the incidence of adhesive capsulitis and hemoglobin A1c. Journal of Shoulder and Elbow Surgery. 2017; 26(10): 1834-1837.
https://doi.org/10.1016/j.jse.2017.03.015
PMid:28495575
Dyer BP, et al. Diabetes as a prognostic factor in frozen shoulder: a systematic review. Archives of rehabilitation research and clinical translation. 2021; 3(3): 100141.
https://doi.org/10.1016/j.arrct.2021.100141
PMid:34589691 PMCid:PMC8463473
Wukich DK. Diabetes and its negative impact on outcomes in orthopaedic surgery. World journal of orthopedics. 2015; 6(3): 331.
https://doi.org/10.5312/wjo.v6.i3.331
PMid:25893176 PMCid:PMC4390895
Brocker C, Thompson DC,Vasiliou V. The role of hyperosmotic stress in inflammation and disease. Biomolecular concepts. 2012; 3(4): 345-364.
https://doi.org/10.1515/bmc-2012-0001
PMid:22977648 PMCid:PMC3438915
Chung SS, et al. Contribution of polyol pathway to diabetes-induced oxidative stress. Journal of the American Society of Nephrology. 2003; 14(suppl_3): S233-S236.
https://doi.org/10.1097/01.ASN.0000077408.15865.06
PMid:12874437
McNulty AL, et al. Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint. Arthritis & Rheumatism. 2005; 52(9): 2676-2685.
https://doi.org/10.1002/art.21254
PMid:16142743
Rosa SC, et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis research & therapy. 2009; 11: 1-11.
https://doi.org/10.1186/ar2713
PMid:19490621 PMCid:PMC2714130
Lin Y, et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. Journal of biological chemistry. 2005; 280(6): 4617-4626.
https://doi.org/10.1074/jbc.M411863200
PMid:15536073
Cecil DL, et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. The Journal of Immunology. 2005; 175(12): 8296-8302.
https://doi.org/10.4049/jimmunol.175.12.8296
PMid:16339570
Rajamani U,Jialal I. Hyperglycemia induces Toll-like receptor-2 and-4 expression and activity in human microvascular retinal endothelial cells: implications for diabetic retinopathy. Journal of diabetes research. 2014; 2014:5071954.
https://doi.org/10.1155/2014/790902
PMid:25610879 PMCid:PMC4293793
Deschamps K, et al. Comparison of foot segmental mobility and coupling during gait between diabetic patients with and without neuropathy and control adults. in 11th Staffordshire conference on Clinical Biomechanics (SCCB 2013). 2013;28(7):813-9.
https://doi.org/10.1016/j.clinbiomech.2013.06.008
PMid:23829980
Centomo H, et al. Postural control following a self-initiated reaching task in type 2 diabetic patients and age-matched controls. Gait & posture. 2007; 25(4): 509-514.
https://doi.org/10.1016/j.gaitpost.2006.06.010
PMid:16876995
Cheing GL, et al. Do the biomechanical properties of the ankle-foot complex influence postural control for people with Type 2 diabetes? Clinical Biomechanics. 2013; 28(1): 88-92.
https://doi.org/10.1016/j.clinbiomech.2012.09.001
PMid:23021727
Burner T, et al. Hyperglycemia reduces proteoglycan levels in tendons. Connective tissue research. 2012; 53(6): 535-541.
https://doi.org/10.3109/03008207.2012.710670
PMid:22891926
Cronin NJ, et al. Achilles tendon length changes during walking in long-term diabetes patients. Clinical biomechanics. 2010; 25(5): 476-482.
https://doi.org/10.1016/j.clinbiomech.2010.01.018
PMid:20193974
Einhorn TA, et al. The mineral and mechanical properties of bone in chronic experimental diabetes. Journal of Orthopaedic Research. 1988; 6(3): 317-323.
https://doi.org/10.1002/jor.1100060303
PMid:3258636
Beam HA, Russell Parsons J, Lin SS. The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. Journal of Orthopaedic Research. 2002; 20(6): 1210-1216.
https://doi.org/10.1016/S0736-0266(02)00066-9
PMid:12472231
Coords M, et al. The effects of low-intensity pulsed ultrasound upon diabetic fracture healing. Journal of Orthopaedic Research. 2011; 29(2): 181-188.
https://doi.org/10.1002/jor.21223
PMid:20886648
Wukich DK. Current concepts review: diabetic foot ulcers. Foot & ankle international. 2010; 31(5): 460-467.
https://doi.org/10.3113/FAI.2010.0460
PMid:20460077
Lavery LA, et al. Risk factors for foot infections in individuals with diabetes. Diabetes care. 2006; 29(6): 1288-1293.
https://doi.org/10.2337/dc05-2425
PMid:16732010
Wukich DK, et al. SIRS is valid in discriminating between severe and moderate diabetic foot infections. Diabetes Care. 2013; 36(11): 3706-3711.
https://doi.org/10.2337/dc13-1083
PMid:24062324 PMCid:PMC3816881
Myers TG, et al. Ankle and hindfoot fusions: comparison of outcomes in patients with and without diabetes. Foot & Ankle International. 2012; 33(1): 20-28.
https://doi.org/10.3113/FAI.2012.0020
PMid:22381232
Wukich DK, et al. Outcomes of ankle fractures in patients with uncomplicated versus complicated diabetes. Foot & Ankle International. 2011; 32(2): 120-130.
https://doi.org/10.3113/FAI.2011.0120
PMid:21288410
Karunakar MA ,Staples KS. Does stress-induced hyperglycemia increase the risk of perioperative infectious complications in orthopaedic trauma patients? Journal of orthopaedic trauma. 2010; 24(12): 752-756.
https://doi.org/10.1097/BOT.0b013e3181d7aba5
PMid:21076247
Richards JE, et al. Stress hyperglycemia and surgical site infection in stable nondiabetic adults with orthopedic injuries. Journal of Trauma and Acute Care Surgery. 2014; 76(4): 1070-1075.
https://doi.org/10.1097/TA.0000000000000177
PMid:24662873
Richards JE, et al. Stress-induced hyperglycemia as a risk factor for surgical-site infection in nondiabetic orthopedic trauma patients admitted to the intensive care unit. Journal of orthopaedic trauma. 2013; 27(1): 16-21.
https://doi.org/10.1097/BOT.0b013e31825d60e5
PMid:22588532 PMCid:PMC3507335
Smilowitz NR, et al. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA cardiology. 2017; 2(2): 181-187.
https://doi.org/10.1001/jamacardio.2016.4792
PMid:28030663 PMCid:PMC5563847
Edmundsson D, Svensson O,Toolanen G. Intermittent claudication in diabetes mellitus due to chronic exertional compartment syndrome of the leg: an observational study of 17 patients. Acta orthopaedica. 2008; 79(4):534-539.
https://doi.org/10.1080/17453670710015544
PMid:18766488
Dowsey MM, Choong PF. Obese diabetic patients are at substantial risk for deep infection after primary TKA. Clinical Orthopaedics and Related Research®. 2009; 467: 1577-1581.
https://doi.org/10.1007/s11999-008-0551-6
PMid:18841430 PMCid:PMC2674158
Bowen JR, et al. Associations among slipped capital femoral epiphysis, tibia vara, and type 2 juvenile diabetes. Journal of Pediatric Orthopaedics. 2009; 29(4): 341-344.
https://doi.org/10.1097/BPO.0b013e3181a53b29
PMid:19461374
Brown E, Genoway KA. Impact of diabetes on outcomes in hand surgery. The Journal of hand surgery. 2011; 36(12): 2067-2072.
https://doi.org/10.1016/j.jhsa.2011.10.002
PMid:22123050
Chen S, et al. Diabetes associated with increased surgical site infections in spinal arthrodesis. Clinical Orthopaedics and Related Research®. 2009; 467: 1670-1673.
https://doi.org/10.1007/s11999-009-0740-y
PMid:19225851 PMCid:PMC2690748
Vlassara H, Palace M. Diabetes and advanced glycation endproducts. Journal of internal medicine. 2002; 251(2): 87-101.
https://doi.org/10.1046/j.1365-2796.2002.00932.x
PMid:11905595
Vlassara H , Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Current diabetes reports. 2014; 14: 1-10.
https://doi.org/10.1007/s11892-013-0453-1
PMid:24292971 PMCid:PMC3903318
Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes research and clinical practice. 2005; 67(1): 3-21.
https://doi.org/10.1016/j.diabres.2004.09.004
PMid:15620429
Singh R, et al. Advanced glycation end-products: a review. Diabetologia. 2001; 44: 129-146.
https://doi.org/10.1007/s001250051591
PMid:11270668
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001; 414(6865): 813-820.
https://doi.org/10.1038/414813a
PMid:11742414
Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. The Journal of Clinical Endocrinology & Metabolism. 2008; 93(4): 1143-1152.
https://doi.org/10.1210/jc.2007-1817
PMid:18182449
Kalousova M, Skrha J, Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological research. 2002; 51(6): 597-604.
https://doi.org/10.33549/physiolres.930234
PMid:12511184
Poulsen MW, et al. Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology. 2013; 60: 10-37.
https://doi.org/10.1016/j.fct.2013.06.052
PMid:23867544
Heinemeier KM, et al. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. The FASEB Journal. 2013; 27(5): 2074.
https://doi.org/10.1096/fj.12-225599
PMid:23401563 PMCid:PMC3633810
Zellers JA, et al. Human Achilles tendon mechanical behavior is more strongly related to collagen disorganization than advanced glycation end-products content. Scientific reports. 2021; 11(1): 24147.
https://doi.org/10.1038/s41598-021-03574-4
PMid:34921194 PMCid:PMC8683434
Karim L ,Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One. 2012; 7(4): e35047.
https://doi.org/10.1371/journal.pone.0035047
PMid:22514706 PMCid:PMC3325937
Guney A, et al. Biomechanical properties of Achilles tendon in diabetic vs non-diabetic patients. Experimental and Clinical Endocrinology & Diabetes. 2015;123(7): 428-432.
https://doi.org/10.1055/s-0035-1549889
PMid:25918879
Andreassen T, Seyer-Hansen K, Bailey A. Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. Biochimica et Biophysica Acta (BBA)-General Subjects. 1981; 677(2): 313-317.
https://doi.org/10.1016/0304-4165(81)90101-X
Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mechanisms of ageing and development. 1998; 106(1-2): 1-56.
https://doi.org/10.1016/S0047-6374(98)00119-5
PMid:9883973
Kannus P. Structure of the tendon connective tissue. Scandinavian journal of medicine & science in sports. 2000; 10(6): 312-320.
https://doi.org/10.1034/j.1600-0838.2000.010006312.x
PMid:11085557
Fang F, Lake SP. Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. Journal of Orthopaedic Research®. 2015; 33(11): 1704-1712.
https://doi.org/10.1002/jor.22955
PMid:26036894
Konow N, Azizi E, Roberts TJ. Muscle power attenuation by tendon during energy dissipation. Proceedings of the Royal Society B: Biological Sciences. 2012; 279(1731): 1108-1113.
https://doi.org/10.1098/rspb.2011.1435
PMid:21957134 PMCid:PMC3267137
Eekhoff JD, Fang F, Lake SP. Multiscale mechanical effects of native collagen cross-linking in tendon. Connective tissue research. 2018; 59(5): 410-422.
https://doi.org/10.1080/03008207.2018.1449837
PMid:29873266
Li Y, et al. Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biology. 2013; 32(3-4): 169-177.
https://doi.org/10.1016/j.matbio.2013.01.003
PMid:23348249
Verzijl N, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis & Rheumatism. 2002; 46(1): 114-123.
https://doi.org/10.1002/1529-0131(200201)46:1<114::AID-ART10025>3.0.CO;2-P
PMid:11822407
Musumeci G, Szychlinska MA, Mobasheri A. Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis. molecular markers of senescent chondrocytes. 2015;30(1):14670.
Nickels JZ. The effect of insulin treatment and exercise modality on skeletal muscle fiber size in streptozotocin-induced type 1 diabetic rats. The University of Western Ontario (Canada). 2017; :29244920.
Snow LM, Fugere NA, Thompson LV. Advanced glycation end-product accumulation and associated protein modification in type II skeletal muscle with aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2007; 62(11): 1204-1210.
https://doi.org/10.1093/gerona/62.11.1204
PMid:18000139
Yamagishi Si. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Current drug targets. 2011;12(14): 2096-2102.
https://doi.org/10.2174/138945011798829456
PMid:22023404
Yamamoto M , Sugimoto T. Advanced glycation end products, diabetes, and bone strength. Current osteoporosis reports. 2016; 14: 320-326.
https://doi.org/10.1007/s11914-016-0332-1
PMid:27704396 PMCid:PMC5104767
Bi Y, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature medicine. 2007; 13(10): 1219-1227.
https://doi.org/10.1038/nm1630
PMid:17828274
Maffulli N, et al. Tenocytes from ruptured and tendinopathic achilles tendons produce greater quantities of type III collagen than tenocytes from normal achilles tendons: an in vitro model of human tendon healing. The American journal of sports medicine. 2000; 28(4): 499-505.
https://doi.org/10.1177/03635465000280040901
PMid:10921640
Benjamin M, Kaiser E, Milz S. Structure‐function relationships in tendons: a review. Journal of anatomy 2008. 212(3): p. 211-228.
https://doi.org/10.1111/j.1469-7580.2008.00864.x
PMid:18304204 PMCid:PMC2408985
Wu YF, et al. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Scientific reports. 2017; 7(1): 44199.
https://doi.org/10.1038/srep44199
PMid:28266660 PMCid:PMC5339827
Poulsen R, et al. Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell death & disease. 2014 5(2): e1074-e1074.
https://doi.org/10.1038/cddis.2014.52
PMid:24556689 PMCid:PMC3944267
Wu YF, et al. Hyperglycemia augments the adipogenic transdifferentiation potential of tenocytes and is alleviated by cyclic mechanical stretch. International Journal of Molecular Sciences. 2017; 19(1): 90.
https://doi.org/10.3390/ijms19010090
PMid:29283422 PMCid:PMC5796040
Ueda Y, et al. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone & joint research. 2018; 7(5): 362-372.
https://doi.org/10.1302/2046-3758.75.BJR-2017-0126.R2
PMid:29922457 PMCid:PMC5987694
Burr SD, Stewart Jr. Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade. Life sciences. 2020; 250: 117569.
https://doi.org/10.1016/j.lfs.2020.117569
PMid:32201277
Vaidya R, Church A,Karim L. Effect of type 2 diabetes on bone cell behavior, in The Science, Etiology and Mechanobiology of Diabetes and its Complications. Elsevier. 2021; :313-326.
https://doi.org/10.1016/B978-0-12-821070-3.00001-5
PMid:33482434
Basta G, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002; 105(7):816-822.
https://doi.org/10.1161/hc0702.104183
PMid:11854121
Ott C, et al. Role of advanced glycation end products in cellular signaling. Redox biology. 2014; 2: 411-429.
https://doi.org/10.1016/j.redox.2013.12.016
PMid:24624331 PMCid:PMC3949097
Pietkiewicz J, et al. Receptors for advanced glycation end products and their physiological and clinical significance. Advances in Hygiene and Experimental Medicine. 2008; 62:511-23.
Lui PPY, Yung PSH. Inflammatory mechanisms linking obesity and tendinopathy. Journal of Orthopaedic Translation. 2021; 31: 80-90.
https://doi.org/10.1016/j.jot.2021.10.003
PMid:34976728 PMCid:PMC8666605
Arnalich F, et al. Enhanced acute-phase response and oxidative stress in older adults with type II diabetes. Hormone and Metabolic Research. 2000; 32(10): 407-412.
https://doi.org/10.1055/s-2007-978662
PMid:11069205
Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular research. 2004; 63(4): 582-592.
https://doi.org/10.1016/j.cardiores.2004.05.001
PMid:15306213
Esposito K, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002; 106(16): 2067-2072.
https://doi.org/10.1161/01.CIR.0000034509.14906.AE
PMid:12379575
Kwan CK, Fu SC, Yung PS. A high glucose level stimulate inflammation and weaken pro-resolving response in tendon cells-a possible factor contributing to tendinopathy in diabetic patients. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology. 2020;19: 1-6.
https://doi.org/10.1016/j.asmart.2019.10.002
PMid:31871896 PMCid:PMC6915841
Spindler MP, et al. Acute hyperglycemia impairs IL-6 expression in humans. Immunity inflammation and disease. 2016; 4(1): 91-97.
https://doi.org/10.1002/iid3.97
PMid:27042306 PMCid:PMC4768063
Kasper M ,Funk RH. Age-related changes in cells and tissues due to advanced glycation end products (AGEs). Archives of Gerontology and Geriatrics. 2001; 32(3): 233-243.
https://doi.org/10.1016/S0167-4943(01)00103-0
PMid:11395169
Panwar P, et al. Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix biology. 2018; 65: 30-44.
https://doi.org/10.1016/j.matbio.2017.06.004
PMid:28634008
Siadat SM, et al. Tendon extracellular matrix assembly, maintenance and dysregulation throughout life. Progress in Heritable Soft Connective Tissue Diseases. 2021: 45-103.
https://doi.org/10.1007/978-3-030-80614-9_3
PMid:34807415
Izumi S, et al. Control of glucose metabolism is important in tenogenic differentiation of progenitors derived from human injured tendons. PloS one. 2019; 14(3): e0213912.
https://doi.org/10.1371/journal.pone.0213912
PMid:30883580 PMCid:PMC6422258
Vaidya R, Lake SP, Zellers JA. Effect of diabetes on tendon structure and function: not limited to collagen crosslinking. Journal of Diabetes Science and Technology. 2023; 17(1): 89-98.
https://doi.org/10.1177/19322968221100842
PMid:35652696 PMCid:PMC9846394
Shi L, et al. Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy. World Journal of Stem Cells. 2021; 13(9): 1338.
https://doi.org/10.4252/wjsc.v13.i9.1338
PMid:34630866 PMCid:PMC8474716
Zhang X, et al. Therapeutic roles of tendon stem/progenitor cells in tendinopathy. Stem cells international. 2016; 2016(1):4076578.
https://doi.org/10.1155/2016/4076578
PMid:27195010 PMCid:PMC4853952
Ni M, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. Journal of orthopaedic research. 2012; 30(4): 613-619.
https://doi.org/10.1002/jor.21559
PMid:21928428
Ansorge HL, Beredjiklian PK, Soslowsky LJ. CD44 deficiency improves healing tendon mechanics and increases matrix and cytokine expression in a mouse patellar tendon injury model. Journal of Orthopaedic Research. 2009; 27(10):1386-1391.
https://doi.org/10.1002/jor.20891
PMid:19382192 PMCid:PMC2810854
Wu PT, et al. Inhibition of CD44 induces apoptosis, inflammation, and matrix metalloproteinase expression in tendinopathy. Journal of Biological Chemistry. 2019; 294(52):20177-20184.
https://doi.org/10.1074/jbc.RA119.009675
PMid:31732563 PMCid:PMC6937571
Zhou Z, et al. Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging cell. 2010; 9(5): 911-915.
https://doi.org/10.1111/j.1474-9726.2010.00598.x
PMid:20569237 PMCid:PMC2944918
Patel SH, Sabbaghi A, Carroll CC. Streptozotocin-induced diabetes alters transcription of multiple genes necessary for extracellular matrix remodeling in rat patellar tendon. Connective tissue research. 2018; 59(5): 447-457.
https://doi.org/10.1080/03008207.2018.1470168
PMid:29745261
Durgam SS, et al. Insulin enhances the in vitro osteogenic capacity of flexor tendon-derived progenitor cells. Stem Cells International. 2019; 2019(1):1602751.
https://doi.org/10.1155/2019/1602751
PMid:31949435 PMCid:PMC6948345
Whelton C, Peach C. Review of diabetic frozen shoulder. European Journal of Orthopaedic Surgery & Traumatology. 2018; 28: 363-371.
https://doi.org/10.1007/s00590-017-2068-8
PMid:29094212
Zreik NH, Malik RA, Charalambous CP. Adhesive capsulitis of the shoulder and diabetes: a meta-analysis of prevalence. Muscles, ligaments and tendons journal. 2016; 6(1): 26.
https://doi.org/10.32098/mltj.01.2016.04
PMid:27331029 PMCid:PMC4915459
Manske RC ,Prohaska D. Diagnosis and management of adhesive capsulitis. Current reviews in musculoskeletal medicine. 2008; 1:180-189.
https://doi.org/10.1007/s12178-008-9031-6
PMid:19468904 PMCid:PMC2682415
Dias R, Cutts S, Massoud S. Frozen shoulder. Bmj. 2005; 331(7530): 1453-1456.
https://doi.org/10.1136/bmj.331.7530.1453
PMid:16356983 PMCid:PMC1315655
Kwaees TA, Charalambous CP. Rates of surgery for frozen shoulder: an experience in England. Muscles, ligaments and tendons journal. 2015; 5(4): 276.
https://doi.org/10.11138/mltj/2015.5.4.276
Chambler A, Carr A. The role of surgery in frozen shoulder. The Journal of Bone & Joint Surgery British Volume. 2003; 85(6): 789-795.
https://doi.org/10.1302/0301-620X.85B6.14379
Koorevaar RC, et al. Incidence and prognostic factors for postoperative frozen shoulder after shoulder surgery: a prospective cohort study. Archives of orthopaedic and trauma surgery. 2017; 137: 293-301.
https://doi.org/10.1007/s00402-016-2589-3
PMid:28132086
Kabbabe B, Ramkumar S, Richardson M. Cytogenetic analysis of the pathology of frozen shoulder. International journal of shoulder surgery. 2010; 4(3): 75.
https://doi.org/10.4103/0973-6042.76966
PMid:21472067 PMCid:PMC3063346
Tamai K, Akutsu M, Yano Y. Primary frozen shoulder: brief review of pathology and imaging abnormalities. Journal of Orthopaedic Science. 2014;19(1): 1-5.
https://doi.org/10.1007/s00776-013-0495-x
PMid:24306579 PMCid:PMC3929028
Bunker T, Anthony P. The pathology of frozen shoulder A Dupuytren-like disease. The Journal of Bone & Joint Surgery British Volume. 1995; 77(5): 677-683.
https://doi.org/10.1302/0301-620X.77B5.7559688
Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. New England Journal of Medicine. 1988; 318(20): 1315-1321.
https://doi.org/10.1056/NEJM198805193182007
PMid:3283558
Ryu JD, et al. Expression of vascular endothelial growth factor and angiogenesis in the diabetic frozen shoulder. Journal of shoulder and elbow surgery. 2006; 15(6): 679-685.
https://doi.org/10.1016/j.jse.2006.01.002
PMid:16990020
Rodeo SA, et al. Immunolocalization of cytokines and their receptors in adhesive capsulitis of the shoulder. Journal of Orthopaedic Research. 1997; 15(3): 427-436.
https://doi.org/10.1002/jor.1100150316
PMid:9246090
Ando A, et al. Identification of prognostic factors for the nonoperative treatment of stiff shoulder. International orthopaedics. 2013; 37: 859-864.
https://doi.org/10.1007/s00264-013-1859-8
PMid:23503671 PMCid:PMC3631491
Couppé C, et al. Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. Age. 2014; 36: 1-19.
https://doi.org/10.1007/s11357-014-9665-9
PMid:24997017 PMCid:PMC4150896
Saudek DM ,Kay J. Advanced glycation endproducts and osteoarthritis. Current rheumatology reports. 2003; 5(1): 33-40.
https://doi.org/10.1007/s11926-003-0081-x
PMid:12590883
Ozawa J, et al. Accumulation of advanced-glycation end products (AGEs) accelerates arthrogenic joint contracture in immobilized rat knee. Journal of Orthopaedic Research®. 2018; 36(3):854-863.
https://doi.org/10.1002/jor.23719
PMid:28862361
Hwang KR, et al. Advanced glycation end products in idiopathic frozen shoulders. Journal of shoulder and elbow surgery. 2016; 25(6): 981-988.
https://doi.org/10.1016/j.jse.2015.10.015
PMid:26776943 PMCid:PMC5402873
McLennan S, Martell S,Yue D. Effects of mesangium glycation on matrix metalloproteinase activities: possible role in diabetic nephropathy. Diabetes. 2002; 51(8): 2612-2618.
https://doi.org/10.2337/diabetes.51.8.2612
PMid:12145178
Forbes JM, et al. Role of advanced glycation end products in diabetic nephropathy. Journal of the American Society of Nephrology. 2003; 14(suppl_3): S254-S258.
https://doi.org/10.1097/01.ASN.0000077413.41276.17
PMid:12874442
Chen L, et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. Journal of Hepatology. 2015; 62(1): 156-164.
https://doi.org/10.1016/j.jhep.2014.07.035
PMid:25111176
Lu Y, et al. Limited joint mobility of the hand: prevalence and relation to chronic complications in non-insulin-dependent diabetes mellitus patients. Journal of the Formosan Medical Association= Taiwan yi zhi. 1993; 92(2): 139-143.
Al-Matubsi HY, et al. Diabetic hand syndromes as a clinical and diagnostic tool for diabetes mellitus patients. Diabetes research and clinical practice. 2011; 94(2): 225-229.
https://doi.org/10.1016/j.diabres.2011.07.012
PMid:21831469
Papanas N,Maltezos E. The diabetic hand: a forgotten complication? Journal of Diabetes and its Complications. 2010; 24(3): 154-162.
https://doi.org/10.1016/j.jdiacomp.2008.12.009
PMid:19217319
Smith L, Burnet S, McNeil J. Musculoskeletal manifestations of diabetes mellitus. British journal of sports medicine. 2003; 37(1): 30.
https://doi.org/10.1136/bjsm.37.1.30
PMid:12547740 PMCid:PMC1724591
Chammas M, et al. Dupuytren's disease, carpal tunnel syndrome, trigger finger, and diabetes mellitus. The Journal of hand surgery. 1995; 20(1): 109-114.
https://doi.org/10.1016/S0363-5023(05)80068-1
PMid:7722249
Gamstedt A, et al. Hand abnormalities are strongly associated with the duration of diabetes mellitus. Journal of internal medicine. 1993; 234(2): 189-193.
https://doi.org/10.1111/j.1365-2796.1993.tb00729.x
PMid:8340742
Yosipovitch G, et al. Trigger finger in young patients with insulin dependent diabetes. The Journal of rheumatology. 1990; 17(7): 951-952.
Stamboulis E, et al. Association between asymptomatic median mononeuropathy and diabetic polyneuropathy severity in patients with diabetes mellitus. Journal of the neurological sciences. 2009; 278(1-2): 41-43.
https://doi.org/10.1016/j.jns.2008.11.006
PMid:19059612
Hamilton M, et al. Motor and sensory nerve conduction in patients with carpal tunnel syndrome and diabetic polyneuropathy. Revista de Neurologia. 1999; 28(12): 1147-1152.
Upreti V, et al. Prayer sign in diabetes mellitus. Indian journal of endocrinology and metabolism. 2013; 17(4): 769-770.
https://doi.org/10.4103/2230-8210.113784
PMid:23961509 PMCid:PMC3743393
D'ambrogi E, et al. Abnormal foot function in diabetic patients: the altered onset of Windlass mechanism. Diabetic medicine. 2005; 22(12): 1713-1719.
https://doi.org/10.1111/j.1464-5491.2005.01699.x
PMid:16401317
Batista F, et al. Achilles tendinopathy in diabetes mellitus. Foot & Ankle International. 2008;29(5):0498.
https://doi.org/10.3113/FAI.2008.0498
PMid:18510903
Abate M, et al. Ultrasound morphology of the Achilles in asymptomatic patients with and without diabetes. Foot & ankle international. 2014; 35(1): 44-49.
https://doi.org/10.1177/1071100713510496
PMid:24163317
Ursini F, et al. Plantar fascia enthesopathy is highly prevalent in diabetic patients without peripheral neuropathy and correlates with retinopathy and impaired kidney function. PLoS One. 2017; 12(3): e0174529.
https://doi.org/10.1371/journal.pone.0174529
PMid:28358891 PMCid:PMC5373572
Craik JD, et al. Human evolution and tears of the rotator cuff. International orthopaedics. 2014; 38: 547-552.
https://doi.org/10.1007/s00264-013-2204-y
PMid:24323350 PMCid:PMC3936073
Tashjian RZ, et al. Incidence of familial tendon dysfunction in patients with full-thickness rotator cuff tears. Open access journal of sports medicine. 2014: 137-141.
https://doi.org/10.2147/OAJSM.S63656
PMid:24966704 PMCid:PMC4043799
Park SE, et al. Intratendinous rotator cuff tears: prevalence and clinical and radiological outcomes of arthroscopically confirmed intratendinous tears at midterm follow-up. The American Journal of Sports Medicine. 2015; 43(2): 415-422.
https://doi.org/10.1177/0363546514556741
PMid:25389369
Kim HM, et al. Shoulder strength in asymptomatic individuals with intact compared with torn rotator cuffs. JBJS. 2009; 91(2): 289-296.
https://doi.org/10.2106/JBJS.H.00219
PMid:19181972 PMCid:PMC2663343
Grant WP, et al. Electron microscopic investigation of the effects of diabetes mellitus on the Achilles tendon. The Journal of foot and ankle surgery. 1997; 36(4): 272-278.
https://doi.org/10.1016/S1067-2516(97)80072-5
PMid:9298442
De Oliveira R, et al. Alterations of tendons in patients with diabetes mellitus: a systematic review. Diabetic Medicine. 2011; 28(8): 886-895.
https://doi.org/10.1111/j.1464-5491.2010.03197.x
PMid:21749441
Fox AJ, et al. Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model. Journal of Orthopaedic Research. 2011; 29(6): 880-885.
https://doi.org/10.1002/jor.21327
PMid:21246619 PMCid:PMC5243138
Huang SW, et al. Diabetes mellitus increases the risk of rotator cuff tear repair surgery: a population-based cohort study. Journal of Diabetes and its Complications. 2016; 30(8): 1473-1477.
https://doi.org/10.1016/j.jdiacomp.2016.07.015
PMid:27600100
Lin TTL, et al. The effect of diabetes, hyperlipidemia, and statins on the development of rotator cuff disease: a nationwide, 11-year, longitudinal, population-based follow-up study. The American journal of sports medicine. 2015; 43(9): 2126-2132.
https://doi.org/10.1177/0363546515588173
PMid:26085191
Le BT, et al. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. The American journal of sports medicine. 2014; 42(5): 1134-1142.
https://doi.org/10.1177/0363546514525336
PMid:24748610
Millar NL, et al. Open versus two forms of arthroscopic rotator cuff repair. Clinical orthopaedics and related research. 2009; 467: 966-978.
https://doi.org/10.1007/s11999-009-0706-0
PMid:19184264 PMCid:PMC2650068
Miller BS, et al. When do rotator cuff repairs fail Serial ultrasound examination after arthroscopic repair of large and massive rotator cuff tears. The American journal of sports medicine. 2011; 39(10): 2064-2070.
https://doi.org/10.1177/0363546511413372
PMid:21737833
Berglund DD, et al. Comorbidity effect on speed of recovery after arthroscopic rotator cuff repair. JSES open access. 2018; 2(1): 60-68.
https://doi.org/10.1016/j.jses.2017.12.003
PMid:30675569 PMCid:PMC6334868
Cho NS, et al. The influence of diabetes mellitus on clinical and structural outcomes after arthroscopic rotator cuff repair. The American journal of sports medicine. 2015;43(4): 991-997.
https://doi.org/10.1177/0363546514565097
PMid:25622985
Clement N, et al. Does diabetes affect outcome after arthroscopic repair of the rotator cuff? The Journal of Bone & Joint Surgery British Volume. 2010; 92(8): 1112-1117.
https://doi.org/10.1302/0301-620X.92B8.23571
PMid:20675756
Miyatake K, et al. Comparable clinical and structural outcomes after arthroscopic rotator cuff repair in diabetic and non-diabetic patients. Knee Surgery, Sports Traumatology, Arthroscopy. 2018; 26: 3810-3817.
https://doi.org/10.1007/s00167-018-4994-3
PMid:30019074
Dhar Y, et al. Arthroscopic rotator cuff repair: impact of diabetes mellitus on patient outcomes. The Physician and sportsmedicine. 2013; 41(1): 22-29.
https://doi.org/10.3810/psm.2013.02.1995
PMid:23445856
Gasbarro G, et al. Morphologic risk factors in predicting symptomatic structural failure of arthroscopic rotator cuff repairs: tear size, location, and atrophy matter. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2016; 32(10): 1947-1952.
https://doi.org/10.1016/j.arthro.2016.01.067
PMid:27129377
Jeong HY, et al. Factors predictive of healing in large rotator cuff tears: is it possible to predict retear preoperatively? The American journal of sports medicine. 2018; 46(7): 1693-1700.
https://doi.org/10.1177/0363546518762386
PMid:29595993
Kim IB, Kim MW. Risk factors for retear after arthroscopic repair of full-thickness rotator cuff tears using the suture bridge technique: classification system. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2016; 32(11): 2191-2200.
https://doi.org/10.1016/j.arthro.2016.03.012
PMid:27209624
Nakamura H, et al. Factors affecting clinical outcome in patients with structural failure after arthroscopic rotator cuff repair. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2016; 32(5): 732-739.
https://doi.org/10.1016/j.arthro.2015.11.025
PMid:26850123
Galatz LM, et al. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. JBJS. 2004; 86(2): 219-224.
https://doi.org/10.2106/00004623-200402000-00002
PMid:14960664
Abate M, Schiavone C, Salini V. Sonographic evaluation of the shoulder in asymptomatic elderly subjects with diabetes. BMC musculoskeletal disorders. 2010; 11: 1-7.
https://doi.org/10.1186/1471-2474-11-278
PMid:21138564 PMCid:PMC3019220
Mall NA, et al. Factors affecting rotator cuff healing. JBJS. 2014;96(9): 778-788.
https://doi.org/10.2106/JBJS.M.00583
PMid:24806015
Hsu SL, et al. Surgical results in rotator cuff tears with shoulder stiffness. Journal of the Formosan Medical Association. 2007; 106(6): 452-461.
https://doi.org/10.1016/S0929-6646(09)60294-1
PMid:17588838
Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019; 366(6467): 818-822.
https://doi.org/10.1126/science.aax3769
PMid:31727826
Ribot C, et al. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS genetics. 2022; 18(1): e1010015.
https://doi.org/10.1371/journal.pgen.1010015
PMid:35025870 PMCid:PMC8791501
Milan G, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nature communications. 2015; 6(1): 6670.
https://doi.org/10.1038/ncomms7670
PMid:25858807 PMCid:PMC4403316
Li Z, et al. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. Journal of cachexia, sarcopenia and muscle. 2019; 10(2): 391-410.
https://doi.org/10.1002/jcsm.12374
PMid:30701698 PMCid:PMC6463472
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 2020; 9(9): 1970.
https://doi.org/10.3390/cells9091970
PMid:32858949 PMCid:PMC7564605
Wang W, et al. SKP-SC-EVs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxidants. 2021; 11(1): 66.
https://doi.org/10.3390/antiox11010066
PMid:35052570 PMCid:PMC8772917
O'Neill BT, et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. The Journal of clinical investigation. 2016; 126(9): 3433-3446.
https://doi.org/10.1172/JCI86522
PMid:27525440 PMCid:PMC5004956
Sandri M, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004; 117(3): 399-412.
https://doi.org/10.1016/S0092-8674(04)00400-3
PMid:15109499
Ferretti R, et al. High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PloS one. 2018; 13(10): e0199728.
https://doi.org/10.1371/journal.pone.0199728
PMid:30286093 PMCid:PMC6171830
Gonçalves DA, et al. Insulin/IGF1 signalling mediates the effects of β2‐adrenergic agonist on muscle proteostasis and growth. Journal of cachexia, sarcopenia and muscle. 2019; 10(2): 455-475.
https://doi.org/10.1002/jcsm.12395
PMid:30932373 PMCid:PMC6463755
Yadav A, et al. Magnoflorine prevent the skeletal muscle atrophy via Akt/mTOR/FoxO signal pathway and increase slow-MyHC production in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology. 2021; 267: 113510.
https://doi.org/10.1016/j.jep.2020.113510
PMid:33141056
on behalf of the PROOF Study Group. Obstructive sleep apnea is associated with preserved bone mineral density in healthy elderly subjects. Sleep, 2013. 36(10): p. 1509-1515.
https://doi.org/10.5665/sleep.3046
PMid:24082310 PMCid:PMC3773200
Di Meo S, Iossa S,Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. Journal of Endocrinology. 2017; 233(1): R15-R42.
https://doi.org/10.1530/JOE-16-0598
PMid:28232636
Aluganti Narasimhulu C, Singla DK. Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. Journal of cachexia, sarcopenia and muscle. 2021; 12(2): 403-420.
https://doi.org/10.1002/jcsm.12662
PMid:33463042 PMCid:PMC8061343
Rudar M, et al. Prematurity blunts the insulin-and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. American Journal of Physiology-Endocrinology and Metabolism. 2021; 320(3): E551-E565.
https://doi.org/10.1152/ajpendo.00203.2020
PMid:33427053 PMCid:PMC7988778
Shen Y, et al. Diabetic muscular atrophy: Molecular mechanisms and promising therapies. Frontiers in Endocrinology. 2022; 13: 917113.
https://doi.org/10.3389/fendo.2022.917113
PMid:35846289 PMCid:PMC9279556
Kim H, et al. Indoprofen prevents muscle wasting in aged mice through activation of PDK1/AKT pathway. Journal of cachexia, sarcopenia and muscle. 2020; 11(4): 1070-1088.
https://doi.org/10.1002/jcsm.12558
PMid:32096917 PMCid:PMC7432593
de Proença ARG, et al. Insulin action on protein synthesis and its association with eIF5A expression and hypusination. Molecular biology reports. 2019; 46: 587-596.
https://doi.org/10.1007/s11033-018-4512-1
PMid:30519811
Ramos PA, et al. Insulin-stimulated muscle glucose uptake and insulin signaling in lean and obese humans. The Journal of Clinical Endocrinology & Metabolism. 2021; 106(4): 1631-1646.
https://doi.org/10.1210/clinem/dgaa919
PMid:33382888 PMCid:PMC7993573
da Silva Rosa SC, et al. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiological reports. 2020; 8(19): e14607.
https://doi.org/10.14814/phy2.14607
PMid:33038072 PMCid:PMC7547588
Izzo A, et al. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021; 13(1): 183.
https://doi.org/10.3390/nu13010183
PMid:33435310 PMCid:PMC7826709
Tournadre A, et al. Sarcopenia. Joint bone spine. 2019; 86(3): 309-314.
https://doi.org/10.1016/j.jbspin.2018.08.001
PMid:30098424
Mesinovic J, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes, metabolic syndrome and obesity: targets and therapy. 2019: 1057-1072.
https://doi.org/10.2147/DMSO.S186600
PMid:31372016 PMCid:PMC6630094
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nature medicine. 2017; 23(7): 804-814.
https://doi.org/10.1038/nm.4350
PMid:28697184 PMCid:PMC6048953
Peng BY, et al. Addressing stem cell therapeutic approaches in pathobiology of diabetes and its complications. Journal of diabetes research. 2018; 2018(1):7806435.
https://doi.org/10.1155/2018/7806435
PMid:30046616 PMCid:PMC6036791
Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Experimental gerontology. 2020; 137: 110964.
https://doi.org/10.1016/j.exger.2020.110964
PMid:32407865
Tanaka M, et al. Effects of combined treatment with blood flow restriction and low-intensity electrical stimulation on diabetes mellitus-associated muscle atrophy in rats. Journal of Diabetes. 2019; 11(4):326-334.
https://doi.org/10.1111/1753-0407.12857
PMid:30225988
Essid SM, Bevington A, Brunskill NJ. Proinsulin C-peptide enhances cell survival and protects against simvastatin-induced myotoxicity in L6 rat myoblasts. International Journal of Molecular Sciences. 2019; 20(7): 1654.
https://doi.org/10.3390/ijms20071654
PMid:30987105 PMCid:PMC6479794
O'Neill BT, et al. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy. Diabetes. 2019; 68(3): 556-570.
https://doi.org/10.2337/db18-0416
PMid:30523026 PMCid:PMC6385751
Bhardwaj G, et al. Insulin and IGF-1 receptors regulate complex I-dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. The Journal of clinical investigation. 2021; 131(18):e146415.
https://doi.org/10.1172/JCI146415
PMid:34343133 PMCid:PMC8439595
Uciechowski P, Dempke W. Interleukin-6: a masterplayer in the cytokine network. Oncology. 2020; 98(3): 131-137.
https://doi.org/10.1159/000505099
PMid:31958792
Carson JA , Baltgalvis KA. Interleukin 6 as a key regulator of muscle mass during cachexia. Exercise and sport sciences reviews. 2010; 38(4): 168-176.
https://doi.org/10.1097/JES.0b013e3181f44f11
PMid:20871233 PMCid:PMC3065300
Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & metabolic syndrome: clinical research & reviews. 2019; 13(2):1165-1172.
https://doi.org/10.1016/j.dsx.2019.01.040
PMid:31336460
Forcina L,Miano C, Musarò A. The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases. Cytokine & Growth Factor Reviews. 2018; 41: 1-9.
https://doi.org/10.1016/j.cytogfr.2018.05.001
PMid:29778303
Acharjee S, et al. Understanding type 1 diabetes: etiology and models. Canadian journal of diabetes. 2013; 37(4): 269-276.
https://doi.org/10.1016/j.jcjd.2013.05.001
PMid:24070892
DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Medical clinics. 2004; 88(4): 787-835.
https://doi.org/10.1016/j.mcna.2004.04.013
PMid:15308380
Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018; 26: 685-698.
https://doi.org/10.1007/s10787-018-0458-0
PMid:29508109
Lauterbach MA , Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflügers Archiv-European Journal of Physiology. 2017; 469: 385-396.
https://doi.org/10.1007/s00424-017-1955-5
PMid:28233125 PMCid:PMC5362664
Perry BD, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exercise immunology review. 2016; 22: 94.
Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. Journal of cellular biochemistry. 2018; 119(1): 105-110.
https://doi.org/10.1002/jcb.26174
PMid:28569437
Huang Z, et al. Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Annals of translational medicine. 2020; 8(24):1681.
https://doi.org/10.21037/atm-20-7269
PMid:33490193 PMCid:PMC7812230
Madaro L, et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nature cell biology. 2018; 20(8): 917-927.
https://doi.org/10.1038/s41556-018-0151-y
PMid:30050118 PMCid:PMC6145844
Zanders L, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. Journal of cachexia, sarcopenia and muscle. 2022; 13(1): 713-727.
https://doi.org/10.1002/jcsm.12867
PMid:34821076 PMCid:PMC8818599
Wan Q, et al. Aspirin alleviates denervation-induced muscle atrophy via regulating the Sirt1/PGC-1α axis and STAT3 signaling. Annals of translational medicine. 2020; 8(22):1524.
https://doi.org/10.21037/atm-20-5460
PMid:33313269 PMCid:PMC7729378
Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nature reviews immunology. 2017; 17(9): 545-558.
https://doi.org/10.1038/nri.2017.52
PMid:28580957 PMCid:PMC5753586
Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation. International review of cell and molecular biology. 2018; 335: 41-84.
https://doi.org/10.1016/bs.ircmb.2017.07.007
PMid:29305014
Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Muscle Atrophy. 2018: 267-279.
https://doi.org/10.1007/978-981-13-1435-3_12
PMid:30390256
Ma W, et al. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Annals of translational medicine. 2019; 7(18):440.
https://doi.org/10.21037/atm.2019.08.101
PMid:31700876 PMCid:PMC6803183
Ma W, et al. The role of inflammatory factors in skeletal muscle injury. Biotarget. 2018; 2(4):4321.
https://doi.org/10.21037/biotarget.2018.04.01
Zhang L, et al. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell metabolism. 2013; 18(3): 368-379.
https://doi.org/10.1016/j.cmet.2013.07.012
PMid:24011072 PMCid:PMC3794464
Shen Y, et al. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Frontiers in physiology. 2019; 10: 1298.
https://doi.org/10.3389/fphys.2019.01298
PMid:31681010 PMCid:PMC6798177
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020; 12(1): e1462.
https://doi.org/10.1002/wsbm.1462
PMid:31407867 PMCid:PMC6916202
Zhang L, et al. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. Journal of the American Society of Nephrology. 2009; 20(3): 604-612.
https://doi.org/10.1681/ASN.2008060628
PMid:19158350 PMCid:PMC2653674
Tan PL, et al. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. The international journal of biochemistry & cell biology. 2015; 62: 72-79.
https://doi.org/10.1016/j.biocel.2015.02.015
PMid:25737250
Nikawa T, Ulla A, Sakakibara I. Polyphenols and their effects on muscle atrophy and muscle health. Molecules. 2021; 26(16): 4887.
https://doi.org/10.3390/molecules26164887
PMid:34443483 PMCid:PMC8398525
Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. Journal of drug targeting. 2017; 25(2): 93-101.
https://doi.org/10.1080/1061186X.2016.1207650
PMid:27356044
Gerber PA ,Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxidants & redox signaling. 2017; 26(10): 501-518.
https://doi.org/10.1089/ars.2016.6755
PMid:27225690 PMCid:PMC5372767
Rendra E, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019; 224(2): 242-253.
https://doi.org/10.1016/j.imbio.2018.11.010
PMid:30739804
Shen Y, et al. Isoquercitrin delays denervated soleus muscle atrophy by inhibiting oxidative stress and inflammation. Frontiers in physiology. 2020; 11: 988.
https://doi.org/10.3389/fphys.2020.00988
PMid:32903465 PMCid:PMC7435639
Ying W, et al. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nature Reviews Endocrinology. 2020; 16(2): 81-90.
https://doi.org/10.1038/s41574-019-0286-3
PMid:31836875 PMCid:PMC8315273
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006; 440(7086): 944-948.
https://doi.org/10.1038/nature04634
PMid:16612386
Sharma VK,Singh TG. Chronic stress and diabetes mellitus: interwoven pathologies. Current diabetes reviews. 2020; 16(6): 546-556.
https://doi.org/10.2174/1573399815666191111152248
PMid:31713487
Martín AI, Priego T, López-Calderón A. Hormones and muscle atrophy. Muscle Atrophy. 2018: 207-233.
https://doi.org/10.1007/978-981-13-1435-3_9
PMid:30390253
Beaupere C, et al. Molecular mechanisms of glucocorticoid-induced insulin resistance. International journal of molecular sciences. 2021; 22(2): 623.
https://doi.org/10.3390/ijms22020623
PMid:33435513 PMCid:PMC7827500
Fappi A, et al. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiological reports. 2019; 7(1): e13966.
https://doi.org/10.14814/phy2.13966
PMid:30648357 PMCid:PMC6333722
Wang XJ, et al. Excessive glucocorticoid-induced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway. Bioscience reports. 2017; 37(6): BSR20171056.
https://doi.org/10.1042/BSR20171056
PMid:29046370 PMCid:PMC5691142
Sun H, et al. TRAF6 inhibition rescues dexamethasone-induced muscle atrophy. International journal of molecular sciences. 2014; 15(6): 11126-11141.
https://doi.org/10.3390/ijms150611126
PMid:24955790 PMCid:PMC4100203
Xie Y, et al. Glucocorticoid-induced CREB activation and myostatin expression in C2C12 myotubes involves phosphodiesterase-3/4 signaling. Biochemical and biophysical research communications. 2018; 503(3): 1409-1414.
https://doi.org/10.1016/j.bbrc.2018.07.056
PMid:30025893 PMCid:PMC6173943
Son YH, et al. Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes. Biomedicine & Pharmacotherapy. 2017; 95: 1486-1492.
https://doi.org/10.1016/j.biopha.2017.09.002
PMid:28946211
Cid-Díaz T, et al. Obestatin signalling counteracts glucocorticoid-induced skeletal muscle atrophy via NEDD4/KLF15 axis. Journal of cachexia, sarcopenia and muscle. 2021; 12(2): 493-505.
https://doi.org/10.1002/jcsm.12677
PMid:33687156 PMCid:PMC8061369
Schiaffino S, et al. Mechanisms regulating skeletal muscle growth and atrophy. The FEBS journal. 2013; 280(17): 4294-4314.
https://doi.org/10.1111/febs.12253
PMid:23517348
Kalaitzoglou E, et al. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes/metabolism research and reviews. 2019; 35(2): e3100.
https://doi.org/10.1002/dmrr.3100
PMid:30467957 PMCid:PMC6358500
Kaneto H, et al. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history. International Journal of Molecular Sciences. 2021; 22(5): 2596.
https://doi.org/10.3390/ijms22052596
PMid:33807522 PMCid:PMC7962041
Peixoto LG, et al. Metformin attenuates the TLR4 inflammatory pathway in skeletal muscle of diabetic rats. Acta diabetologica. 2017; 54: 943-951.
https://doi.org/10.1007/s00592-017-1027-5
PMid:28791487
Kim DH, et al. Vitamin D and endothelial function. Nutrients. 2020; 12(2): 575.
https://doi.org/10.3390/nu12020575
PMid:32098418 PMCid:PMC7071424
Chen S,Villalta SA,Agrawal DK. FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. Journal of bone and mineral research. 2016; 31(3): 585-595.
https://doi.org/10.1002/jbmr.2729
PMid:26462119 PMCid:PMC4814301
Rogero MM ,Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018; 10(4): 432.
https://doi.org/10.3390/nu10040432
PMid:29601492 PMCid:PMC5946217
DiNicolantonio JJ ,O'Keefe JH. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open heart. 2018; 5(2): e000946.
https://doi.org/10.1136/openhrt-2018-000946
PMid:30564378 PMCid:PMC6269634
Dupont J, et al. The role of omega-3 in the prevention and treatment of sarcopenia. Aging clinical and experimental research. 2019; 31(6): 825-836.
https://doi.org/10.1007/s40520-019-01146-1
PMid:30784011 PMCid:PMC6583677
Lai TC, et al. Combined exposure to fine particulate matter and high glucose aggravates endothelial damage by increasing inflammation and mitophagy: the involvement of vitamin D. Particle and Fibre Toxicology. 2022; 19(1): 25.
https://doi.org/10.1186/s12989-022-00462-1
PMid:35351169 PMCid:PMC8966234
Vos T, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet. 2012; 380(9859): 2163-2196.
https://doi.org/10.1016/S0140-6736(12)61729-2
PMid:23245607
CDC P. National diabetes statistics report: estimates of diabetes and its burden in the United States 2014. Atlanta: US Department of Health and Human Services. 2014;2014: .
Lawrence RC, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II. Arthritis & Rheumatism. 2008; 58(1): 26-35.
https://doi.org/10.1002/art.23176
PMid:18163497 PMCid:PMC3266664
Visser A, et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Annals of the rheumatic diseases. 2015; 74(10): 1842-1847.
https://doi.org/10.1136/annrheumdis-2013-205012
PMid:24845389
Teodoro JS, et al. High-fat and obesogenic diets: current and future strategies to fight obesity and diabetes. Genes & nutrition. 2014; 9: 1-15.
https://doi.org/10.1007/s12263-014-0406-6
PMid:24842072 PMCid:PMC4169069
Barbour KE, et al. Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation-United States, 2010-2012. Morbidity and mortality weekly report. 2013; 62(44): 869.
Gierisch JM, et al. Prioritization of patient-centered comparative effectiveness research for osteoarthritis. Annals of internal medicine. 2014; 160(12): 836-841.
https://doi.org/10.7326/M14-0318
PMid:24821227
Rahman MM, et al. Risk of cardiovascular disease in patients with osteoarthritis: a prospective longitudinal study. Arthritis care & research. 2013; 65(12): 1951-1958.
https://doi.org/10.1002/acr.22092
PMid:23925995
Scanzello C, et al. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis and cartilage. 2009; 17(8):1040-1048.
https://doi.org/10.1016/j.joca.2009.02.011
PMid:19289234
Stenholm S, et al. Adipocytokines and the metabolic syndrome among older persons with and without obesity: the InCHIANTI study. Clinical endocrinology. 2010; 73(1): 55-65.
https://doi.org/10.1111/j.1365-2265.2009.03742.x
PMid:19878507 PMCid:PMC2888845
Andrikopoulos S, et al. Evaluating the glucose tolerance test in mice. American Journal of Physiology-Endocrinology and Metabolism. 2008; 295(6): E1323-E1332.
https://doi.org/10.1152/ajpendo.90617.2008
PMid:18812462
Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Current opinion in rheumatology. 2008; 20(5): 565-572.
https://doi.org/10.1097/BOR.0b013e32830aba34
PMid:18698179
Rosa S, et al. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis and Cartilage. 2011; 19(6): 719-727.
https://doi.org/10.1016/j.joca.2011.02.004
PMid:21324373
Rosa SC, et al. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes. Journal of cellular biochemistry. 2011; 112(10): 2813-2824.
https://doi.org/10.1002/jcb.23196
PMid:21608018
Rufino AT, et al. Expression and function of K (ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing. Journal of cellular biochemistry. 2013; 114(8): 1879-1889.
https://doi.org/10.1002/jcb.24532
PMid:23494827 PMCid:PMC3736163
Mobasheri A. Glucose: an energy currency and structural precursor in articular cartilage and bone with emerging roles as an extracellular signaling molecule and metabolic regulator. Frontiers in endocrinology. 2012; 3: 29297.
https://doi.org/10.3389/fendo.2012.00153
PMid:23251132 PMCid:PMC3523231
Oren TW, et al. Arthroplasty in veterans: analysis of cartilage, bone, serum, and synovial fluid reveals differences and similarities in osteoarthritis with and without comorbid diabetes. Journal of rehabilitation research and development. 2011; 48(10): 1195.
https://doi.org/10.1682/JRRD.2010.09.0186
PMid:22234664 PMCid:PMC4487361
Loeser RF, et al. Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2005; 52(8): 2376-2385.
https://doi.org/10.1002/art.21199
PMid:16052547 PMCid:PMC1488730
Yammani RR, et al. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis & Rheumatism. 2006; 54(9): 2901-2911.
https://doi.org/10.1002/art.22042
PMid:16948116
DeGroot J, et al. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthritis and cartilage. 2001; 9(8): 720-726.
https://doi.org/10.1053/joca.2001.0469
PMid:11795991
Reddy GK. Glucose-mediated in vitro glycation modulates biomechanical integrity of the soft tissues but not hard tissues. Journal of orthopaedic research. 2003; 21(4): 738-743.
https://doi.org/10.1016/S0736-0266(03)00006-8
PMid:12798076
Vos PA, et al. Elevation of cartilage AGEs does not accelerate initiation of canine experimental osteoarthritis upon mild surgical damage. Journal of Orthopaedic Research. 2012; 30(9): 1398-1404.
https://doi.org/10.1002/jor.22092
PMid:22388985
Zhang P, et al. Osmotic stress, not aldose reductase activity, directly induces growth factors and MAPK signaling changes during sugar cataract formation. Experimental eye research. 2012; 101: 36-43.
https://doi.org/10.1016/j.exer.2012.05.007
PMid:22710095 PMCid:PMC3407318
Cheng X, et al. Polyol pathway mediates enhanced degradation of extracellular matrix via p38 MAPK activation in intervertebral disc of diabetic rats. Connective tissue research. 2013; 54(2): 118-122.
https://doi.org/10.3109/03008207.2012.754886
PMid:23215968
McNulty AL, et al. The effects of adipokines on cartilage and meniscus catabolism. Connective tissue research. 2011; 52(6): 523-533.
https://doi.org/10.3109/03008207.2011.597902
PMid:21787135 PMCid:PMC3616891
Wu CL, et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Annals of the rheumatic diseases. 2015; 74(11):2076-2083.
https://doi.org/10.1136/annrheumdis-2014-205601
PMid:25015373 PMCid:PMC4363043
Al-Hamodi Z, et al. Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetology & metabolic syndrome. 2014; 6: 1-8.
https://doi.org/10.1186/1758-5996-6-99
PMid:25276234 PMCid:PMC4177707
Won HY, et al. Effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats. Journal of Neurosurgery: Spine. 2009; 11(6): 741-748.
https://doi.org/10.3171/2009.6.SPINE09198
PMid:19951028
Gazzarrini C, et al. Possible mechanism of inhibition of cartilage alkaline phosphatase by insulin. Acta diabetologia latina. 1989; 26: 321-327.
https://doi.org/10.1007/BF02624644
PMid:2698041
Chen YJ, et al. PPARγ is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages. Journal of Orthopaedic Research. 2015; 33(3): 373-381.
https://doi.org/10.1002/jor.22770
PMid:25410618
McInnes IB ,O'Dell JR. State-of-the-art: rheumatoid arthritis. Annals of the rheumatic diseases. 2010; 69(11): 1898-1906.
https://doi.org/10.1136/ard.2010.134684
PMid:20959326
Tian Z, et al. The relationship between rheumatoid arthritis and diabetes mellitus: a systematic review and meta-analysis. Cardiovascular endocrinology & metabolism. 2021; 10(2): 125-131.
https://doi.org/10.1097/XCE.0000000000000244
PMid:34124603 PMCid:PMC8189616
Blum A, Adawi M. Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmunity reviews. 2019; 18(7): 679-690.
https://doi.org/10.1016/j.autrev.2019.05.005
PMid:31059840
Chung CP, et al. Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis. Atherosclerosis. 2008; 196(2): 756-763.
https://doi.org/10.1016/j.atherosclerosis.2007.01.004
PMid:17266963
Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The lancet. 2017; 389(10085): 2239-2251.
https://doi.org/10.1016/S0140-6736(17)30058-2
PMid:28190580
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.





