Narrative Review of Artificial Intelligence in Ophthalmic Disease Detection

Authors

  • Kholoud Ahmad Bokhary Department of Optometry, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia

DOI:

https://doi.org/10.31661/gmj.v14i.3979

Abstract

Background: Artificial intelligence (AI) is revolutionizing ophthalmology and optometry by utilizing high-resolution imaging modalities such as optical coherence tomography (OCT), fundus photography, and corneal topography. These modalities generate quantifiable data suitable for machine learning (ML), facilitating automated diagnosis of ocular conditions like diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD), which are leading causes of visual impairment worldwide. This narrative review evaluates the role of ML in improving diagnostic accuracy and accessibility in eye care, focusing on methodological complexities, supervised and unsupervised learning approaches, and challenges in clinical integration. Materials and Methods: A comprehensive narrative literature review was conducted, analyzing ML applications in ophthalmology. Results: AI systems exhibit high sensitivity and specificity, often outperforming human graders in diabetic retinopathy screening and early detection of glaucoma and AMD using OCT and fundus imaging. Anterior segment diseases benefit from AI-driven corneal topography analysis. Challenges include image quality, dataset imbalances, and variability in imaging protocols, necessitating fine-tuning for diverse clinical environments. Unsupervised learning shows potential for identifying novel biomarkers but requires further validation. Conclusion: AI-driven ML models significantly enhance eye disease diagnostics, improving accuracy and accessibility, particularly in resource-limited settings. However, challenges like data standardization and model generalizability must be addressed to ensure robust clinical adoption.

References

Holmes J, Sacchi L, Bellazzi R. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86(86):3348.

https://doi.org/10.1308/147870804290

PMid:15333167 PMCid:PMC1964229

Shanthi S, Aruljyothi L, Balasundaram MB, Janakiraman A, Nirmaladevi K, Pyingkodi M. Artificial intelligence applications in different imaging modalities for corneal topography. Survey of Ophthalmology. 2022 May 1;67(3):80116.

https://doi.org/10.1016/j.survophthal.2021.08.004

PMid:34450134

Fan R, Chan TC, Prakash G, Jhanji V. Applications of corneal topography and tomography: a review. Clinical & experimental ophthalmology. 2018 Mar;46(2):13346.

https://doi.org/10.1111/ceo.13136

PMid:29266624

Vision Loss Expert Group of the Global Burden of Disease Study. Global estimates on the number of people blind or visually impaired by agerelated macular degeneration: a metaanalysis from 2000 to 2020. Eye. 2024 Jul 4;38(11):2070.

Jonas JB, Bourne RR, White RA, Flaxman SR, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Price H, Wong TY, Resnikoff S. Visual impairment and blindness due to macular diseases globally: a systematic review and metaanalysis. American journal of ophthalmology. 2014 Oct 1;158(4):80815.

https://doi.org/10.1016/j.ajo.2014.06.012

PMid:24973605

Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of agerelated macular degeneration and disease burden projection for 2020 and 2040: a systematic review and metaanalysis. The Lancet Global Health. 2014 Feb 1;2(2):e10616.

https://doi.org/10.1016/S2214-109X(13)70145-1

PMid:25104651

Channa R, Wolf RM, Abràmoff MD, Lehmann HP. Effectiveness of artificial intelligence screening in preventing vision loss from diabetes: a policy model. NPJ digital medicine. 2023 Mar 27;6(1):53.

https://doi.org/10.1038/s41746-023-00785-z

PMid:36973403 PMCid:PMC10042864

Beyeler M, SanchezGarcia M. Towards a Smart Bionic Eye: AIpowered artificial vision for the treatment of incurable blindness. Journal of Neural Engineering. 2022 Dec 7;19(6):063001.

https://doi.org/10.1088/1741-2552/aca69d

PMid:36541463 PMCid:PMC10507809

Huang X, Wang H, She C, Feng J, Liu X, Hu X, Chen L, Tao Y. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology. 2022 Sep 29;13:946915.

https://doi.org/10.3389/fendo.2022.946915

PMid:36246896 PMCid:PMC9559815

Grzybowski A, Brona P. Analysis and comparison of two artificial intelligence diabetic retinopathy screening algorithms in a pilot study: IDxDR and reanalyze. Journal of Clinical Medicine. 2021 May 27;10(11):2352.

https://doi.org/10.3390/jcm10112352

PMid:34071990 PMCid:PMC8199438

Li F, Wang D, Yang Z, Zhang Y, Jiang J, Liu X, Kong K, Zhou F, Tham CC, Medeiros F, Han Y. The AI revolution in glaucoma: bridging challenges with opportunities. Progress in Retinal and Eye Research. 2024 Aug 24:101291.

https://doi.org/10.1016/j.preteyeres.2024.101291

PMid:39186968

Wei W, Anantharanjit R, Patel RP, Cordeiro MF. Detection of macular atrophy in agerelated macular degeneration aided by artificial intelligence. Expert Review of Molecular Diagnostics. 2023 Jun 3;23(6):48594.

https://doi.org/10.1080/14737159.2023.2208751

PMid:37144908

Nguyen T, Ong J, Masalkhi M, Waisberg E, Zaman N, Sarker P, Aman S, Lin H, Luo M, Ambrosio R, Machado AP. Artificial intelligence in corneal diseases: A narrative review. Contact Lens and Anterior Eye. 2024 Aug 27:102284.

https://doi.org/10.1016/j.clae.2024.102284

PMid:39198101

Soh ZD, Jiang Y, S/O Ganesan SS, Zhou M, Nongiur M, Majithia S, Tham YC, Rim TH, Qian C, Koh V, Aung T. From 2 dimensions to third dimension: Quantitative prediction of anterior chamber depth from anterior segment photographs via deep learning. PLOS Digital Health. 2023 Feb 1;2(2): e0000193.

https://doi.org/10.1371/journal.pdig.0000193

PMid:36812642 PMCid:PMC9931242

Wu X, Liu L, Zhao L, Guo C, Li R, Wang T, Yang X, Xie P, Liu Y, Lin H. Application of artificial intelligence in anterior segment ophthalmic diseases: diversity and standardization. Annals of Translational Medicine. 2020 Jun;8(11):714.

https://doi.org/10.21037/atm-20-976

PMid:32617334 PMCid:PMC7327317

Cai W, Xu J, Wang K, Liu X, Xu W, Cai H, Gao Y, Su Y, Zhang M, Zhu J, Zhang CL. EyeHealer: a largescale anterior eye segment dataset with eye structure and lesion annotations. Precision Clinical Medicine. 2021 Jun;4(2):8592.

https://doi.org/10.1093/pcmedi/pbab009

PMid:35694155 PMCid:PMC8982547

Li W, Yang Y, Zhang K, Long E, He L, Zhang L, Zhu Y, Chen C, Liu Z, Wu X, Yun D. Dense anatomical annotation of slitlamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nature Biomedical Engineering. 2020 Aug;4(8):76777.

https://doi.org/10.1038/s41551-020-0577-y

PMid:32572198

Mitry D, Zutis K, Dhillon B, Peto T, Hayat S, Khaw KT, Morgan JE, Moncur W, Trucco E, Foster PJ, UK Biobank Eye and Vision Consortium. The accuracy and reliability of crowdsource annotations of digital retinal images. Translational vision science & technology. 2016 Sep 1;5(5):6.

https://doi.org/10.1167/tvst.5.5.6

PMid:27668130 PMCid:PMC5032847

Camilo EN, Junior AP, Pinheiro HM, da Costa RM. A pupillary image dataset: 10,000 annotated and 258,790 nonannotated images of patients with glaucoma, diabetes, and subjects influenced by alcohol, coupled with a segmentation performance evaluation. Computers in Biology and Medicine. 2025 Mar 1;186:109594.

https://doi.org/10.1016/j.compbiomed.2024.109594

PMid:39753022

Arikan M, Willoughby J, Ongun S, Sallo F, Montesel A, Ahmed H, Hagag A, Book M, Faatz H, Cicinelli MV, Fawzi AA. OCT5k: A dataset of multidisease and multigraded annotations for retinal layers. Scientific data. 2025 Feb 14;12(1):267.

https://doi.org/10.1038/s41597-024-04259-z

PMid:39952954 PMCid:PMC11829038

Xue J, Feng Z, Zeng L, Wang S, Zhou X, Xia J, Deng A. Soul: An octa dataset based on human machine collaborative annotation framework. Scientific Data. 2024 Aug 2;11(1):838.a

https://doi.org/10.1038/s41597-024-03665-7

PMid:39095383 PMCid:PMC11297209

Yang WH, Xu YW, Sun XH. Guidelines for glaucoma imaging classification, annotation, and quality control for artificial intelligence applications. International Journal of Ophthalmology. 2025 Jul 18;18(7):1181.

https://doi.org/10.18240/ijo.2025.07.01

PMid:40688788 PMCid:PMC12207309

Punithavathi IH, GaneshKumar P. Annotation and retrieval of retinal images using support vector machine with active learning. In2019 Ieee International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) 2019 Apr 11 (pp. 16). IEEE.

Chaki J. Applications of Deep LearningBased Image Augmentation. InThe Art of Deep Learning Image Augmentation: The Seeds of Success 2025 May 3 (pp. 7992). Singapore: Springer Nature Singapore.

https://doi.org/10.1007/978-981-96-5081-1

Deng L, Lyu J, Huang H, Deng Y, Yuan J, Tang X. The SUSTechSYSU dataset for automatically segmenting and classifying corneal ulcers. Scientific data. 2020 Jan 20;7(1):23.

https://doi.org/10.1038/s41597-020-0360-7

PMid:31959768 PMCid:PMC6971241

Wang Z, Lyu J, Luo W, Tang X. Adjacent scale fusion and corneal position embedding for corneal ulcer segmentation InInternational Workshop on Ophthalmic Medical Image Analysis. Cham: Springer International Publishing. 2021 Sep 21;13075: 110.

https://doi.org/10.1007/978-3-030-87000-3_1

Oliveira A, Pereira S, Silva CA. Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications. 2018 Dec 1;112:22942.

https://doi.org/10.1016/j.eswa.2018.06.034

Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin Jr KW, Chaum E. Exudatebased diabetic macular edema detection in fundus images using publicly available datasets. Medical image analysis. 2012 Jan 1;16(1):21626.

https://doi.org/10.1016/j.media.2011.07.004

PMid:21865074 PMCid:PMC10729314

Kulyabin M, Zhdanov A, Nikiforova A, Stepichev A, Kuznetsova A, Ronkin M, Borisov V, Bogachev A, Korotkich S, Constable PA, Maier A. Octdl: Optical coherence tomography dataset for imagebased deep learning methods. Scientific data. 2024 Apr 11;11(1):365.

https://doi.org/10.1038/s41597-024-03182-7

PMid:38605088 PMCid:PMC11009408

Duwairi RM, AlZboon SA, AlDwairi RA, Obaidi A. A deep learning model and a dataset for diagnosing ophthalmology diseases. Journal of Information & Knowledge Management. 2021 Sep 21;20(03):2150036.

https://doi.org/10.1142/S0219649221500362

Kovalyk O, MoralesSánchez J, VerdúMonedero R, SellésNavarro I, PalazónCabanes A, SanchoGómez JL. PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Scientific Data. 2022 Jun 9;9(1):291.

https://doi.org/10.1038/s41597-022-01388-1

PMid:35680965 PMCid:PMC9184612

Panchal S, Naik A, Kokare M, Pachade S, Naigaonkar R, Phadnis P, Bhange A. Retinal Fundus MultiDisease Image Dataset (RFMiD) 2.0: a dataset of frequently and rarely identified diseases. Data. 2023 Jan 28;8(2):29.

https://doi.org/10.3390/data8020029

Jin K, Huang X, Zhou J, Li Y, Yan Y, Sun Y, Zhang Q, Wang Y, Ye J. Fives: A fundus image dataset for artificial intelligence based vessel segmentation. Scientific data. 2022 Aug 4;9(1):475.

https://doi.org/10.1038/s41597-022-01564-3

PMid:35927290 PMCid:PMC9352679

Saravanan R, Sujatha P. A state of art techniques on machine learning algorithms: a perspective of supervised learning approaches in data classification. In2018 Second international conference on intelligent computing and control systems (ICICCS) 2018 Jun 14 (pp. 945949). IEEE.

https://doi.org/10.1109/ICCONS.2018.8663155

Verma R, Nagar V, Mahapatra S. Introduction to supervised learning. Data Analytics in Bioinformatics: A Machine Learning Perspective. 2021 Feb 1:134.

https://doi.org/10.1002/9781119785620.ch1

Malik MH, Wan Z, Gao Y, Ding DW. Efficient diagnosis of retinal disorders using dualbranch semisupervised learning (DBSSL): An enhanced multiclass classification approach. Computerized Medical Imaging and Graphics. 2025 Apr 1;121:102494.

https://doi.org/10.1016/j.compmedimag.2025.102494

PMid:39914126

Tashkandi A. Eye Care: Predicting Eye Diseases Using Deep Learning Based on Retinal Images. Computation. 2025 Apr 3;13(4):91.

https://doi.org/10.3390/computation13040091

Khan AA, Ahmad KM, Shafiq S, Akram MU, Shao J. ATLASS: An AnaTomicaLlyAware SelfSupervised Learning Framework for Generalizable Retinal Disease Detection. IEEE Journal of Biomedical and Health Informatics. 2025 Aug 6; : .

https://doi.org/10.1109/JBHI.2025.3595697

PMid:40768461

Wang L, Zhang X, Li Z, Yu S, Wu Y, Zhang S, Jiang G, Tian B, Mei C, Pu J, Liang Y. A deep semisupervised learning approach to the detection of glaucoma on outofdistribution retinal fundus image datasets. BMC ophthalmology. 2025 May 30;25(1):326.

https://doi.org/10.1186/s12886-025-04153-1

PMid:40448117 PMCid:PMC12125766

Shim S, Kim MS, Yae CG, Kang YK, Do JR, Kim HK, Yang HL. Development and validation of a multistage selfsupervised learning model for optical coherence tomography image classification. Journal of the American Medical Informatics Association. 2025 May;32(5):80010.

https://doi.org/10.1093/jamia/ocaf021

PMid:40037789 PMCid:PMC12012341

Zhang J, Cui Y, Wu Z, Xi H, Zhu J. OutofDistribution Detection for OpenSet SemiSupervised Medical Image Classification. InProceedings of the 2025 International Conference on Multimedia Retrieval. 2025; :17771785.

https://doi.org/10.1145/3731715.3733412

Ranjith D, Sakthivanitha M. A Novel MultiModal Deep Learning Framework for Early Detection of Ocular Diseases. In2025 International Conference on Intelligent Computing and Control Systems (ICICCS) 2025 Mar 19 (pp. 13401346). IEEE.

https://doi.org/10.1109/ICICCS65191.2025.10985242

Hajamydeen AI, Suhaimy MA, Abdullah MI. Advanced Deep Learning Techniques for Comprehensive Detection of Eye Disease Using Retinal and OCT Imaging. Journal Publication of International Research for Engineering and Management (JOIREM). 2025 Jun;5(06): .

Li JX, Li SH, Tsou PS. Application of Deep Learning Neural Network Architectures in Ocular Disease Classification Models. Journal of Information and Computing. 2025 Jun 28;3(2):1422.

Nasra P, Gupta S, Ravi K, Singh AR. EfficientNetB3Based Deep Learning Approach for Automated Eye Disease Detection. In2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 2025 Apr 9 (pp. 16). IEEE.

https://doi.org/10.1109/OTCON65728.2025.11070729

PMid:40084566

Kansal I, Khullar V, Sharma P, Singh S, Hamid JA, Santhosh AJ. Multiple model visual feature embedding and selection method for an efficient ocular disease classification. Scientific Reports. 2025 Feb 12;15(1):5157.

https://doi.org/10.1038/s41598-024-84922-y

PMid:39934192 PMCid:PMC11814330

Liang X, Luo S, Liu Z, Liu Y, Luo S, Zhang K, Li L. Unsupervised machine learning analysis of optical coherence tomography radiomics features for predicting treatment outcomes in diabetic macular edema. Scientific Reports. 2025 Apr 18;15(1):13389.

https://doi.org/10.1038/s41598-025-96988-3

PMid:40251316 PMCid:PMC12008428

Tang N, Chen Q, Meng Y, Lei D, Jiang L, Qin Y, Huang X, Tang F, Huang S, Lan Q, Chen Q. An explainable unsupervised learning approach for anomaly detection on corneal in vivo confocal microscopy images. Frontiers in Bioengineering and Biotechnology. 2025 Jun 6;13:1576513.

https://doi.org/10.3389/fbioe.2025.1576513

PMid:40547296 PMCid:PMC12179219

Shifani SA, Saraswathy N, Santhi GB, Giri J, AlMousa MR. Empirical Evaluation of RealTime Diabetic Retinopathy Disease Detection using IoT Enabled Medical Imaging Processing Strategy. In2025 International Conference on Electronics and Renewable Systems (ICEARS) 2025 Feb 11 (pp. 526531). IEEE.

https://doi.org/10.1109/ICEARS64219.2025.10940249

Pojoga S, Andrei A, Dragoi V. Unsupervised learning of temporal regularities in visual cortical populations. Nature Communications. 2025 Jul 1;16(1):5614.

https://doi.org/10.1038/s41467-025-60731-3

PMid:40592812 PMCid:PMC12216384

Downloads

Published

2025-09-20

How to Cite

Bokhary, K. A. (2025). Narrative Review of Artificial Intelligence in Ophthalmic Disease Detection. Galen Medical Journal, 14, e3979. https://doi.org/10.31661/gmj.v14i.3979

Issue

Section

Review Article