Narrative Review of Artificial Intelligence in Ophthalmic Disease Detection
DOI:
https://doi.org/10.31661/gmj.v14i.3979Abstract
Background: Artificial intelligence (AI) is revolutionizing ophthalmology and optometry by utilizing high-resolution imaging modalities such as optical coherence tomography (OCT), fundus photography, and corneal topography. These modalities generate quantifiable data suitable for machine learning (ML), facilitating automated diagnosis of ocular conditions like diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD), which are leading causes of visual impairment worldwide. This narrative review evaluates the role of ML in improving diagnostic accuracy and accessibility in eye care, focusing on methodological complexities, supervised and unsupervised learning approaches, and challenges in clinical integration. Materials and Methods: A comprehensive narrative literature review was conducted, analyzing ML applications in ophthalmology. Results: AI systems exhibit high sensitivity and specificity, often outperforming human graders in diabetic retinopathy screening and early detection of glaucoma and AMD using OCT and fundus imaging. Anterior segment diseases benefit from AI-driven corneal topography analysis. Challenges include image quality, dataset imbalances, and variability in imaging protocols, necessitating fine-tuning for diverse clinical environments. Unsupervised learning shows potential for identifying novel biomarkers but requires further validation. Conclusion: AI-driven ML models significantly enhance eye disease diagnostics, improving accuracy and accessibility, particularly in resource-limited settings. However, challenges like data standardization and model generalizability must be addressed to ensure robust clinical adoption.
References
Holmes J, Sacchi L, Bellazzi R. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86(86):3348.
https://doi.org/10.1308/147870804290
PMid:15333167 PMCid:PMC1964229
Shanthi S, Aruljyothi L, Balasundaram MB, Janakiraman A, Nirmaladevi K, Pyingkodi M. Artificial intelligence applications in different imaging modalities for corneal topography. Survey of Ophthalmology. 2022 May 1;67(3):80116.
https://doi.org/10.1016/j.survophthal.2021.08.004
PMid:34450134
Fan R, Chan TC, Prakash G, Jhanji V. Applications of corneal topography and tomography: a review. Clinical & experimental ophthalmology. 2018 Mar;46(2):13346.
https://doi.org/10.1111/ceo.13136
PMid:29266624
Vision Loss Expert Group of the Global Burden of Disease Study. Global estimates on the number of people blind or visually impaired by agerelated macular degeneration: a metaanalysis from 2000 to 2020. Eye. 2024 Jul 4;38(11):2070.
Jonas JB, Bourne RR, White RA, Flaxman SR, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Price H, Wong TY, Resnikoff S. Visual impairment and blindness due to macular diseases globally: a systematic review and metaanalysis. American journal of ophthalmology. 2014 Oct 1;158(4):80815.
https://doi.org/10.1016/j.ajo.2014.06.012
PMid:24973605
Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of agerelated macular degeneration and disease burden projection for 2020 and 2040: a systematic review and metaanalysis. The Lancet Global Health. 2014 Feb 1;2(2):e10616.
https://doi.org/10.1016/S2214-109X(13)70145-1
PMid:25104651
Channa R, Wolf RM, Abràmoff MD, Lehmann HP. Effectiveness of artificial intelligence screening in preventing vision loss from diabetes: a policy model. NPJ digital medicine. 2023 Mar 27;6(1):53.
https://doi.org/10.1038/s41746-023-00785-z
PMid:36973403 PMCid:PMC10042864
Beyeler M, SanchezGarcia M. Towards a Smart Bionic Eye: AIpowered artificial vision for the treatment of incurable blindness. Journal of Neural Engineering. 2022 Dec 7;19(6):063001.
https://doi.org/10.1088/1741-2552/aca69d
PMid:36541463 PMCid:PMC10507809
Huang X, Wang H, She C, Feng J, Liu X, Hu X, Chen L, Tao Y. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology. 2022 Sep 29;13:946915.
https://doi.org/10.3389/fendo.2022.946915
PMid:36246896 PMCid:PMC9559815
Grzybowski A, Brona P. Analysis and comparison of two artificial intelligence diabetic retinopathy screening algorithms in a pilot study: IDxDR and reanalyze. Journal of Clinical Medicine. 2021 May 27;10(11):2352.
https://doi.org/10.3390/jcm10112352
PMid:34071990 PMCid:PMC8199438
Li F, Wang D, Yang Z, Zhang Y, Jiang J, Liu X, Kong K, Zhou F, Tham CC, Medeiros F, Han Y. The AI revolution in glaucoma: bridging challenges with opportunities. Progress in Retinal and Eye Research. 2024 Aug 24:101291.
https://doi.org/10.1016/j.preteyeres.2024.101291
PMid:39186968
Wei W, Anantharanjit R, Patel RP, Cordeiro MF. Detection of macular atrophy in agerelated macular degeneration aided by artificial intelligence. Expert Review of Molecular Diagnostics. 2023 Jun 3;23(6):48594.
https://doi.org/10.1080/14737159.2023.2208751
PMid:37144908
Nguyen T, Ong J, Masalkhi M, Waisberg E, Zaman N, Sarker P, Aman S, Lin H, Luo M, Ambrosio R, Machado AP. Artificial intelligence in corneal diseases: A narrative review. Contact Lens and Anterior Eye. 2024 Aug 27:102284.
https://doi.org/10.1016/j.clae.2024.102284
PMid:39198101
Soh ZD, Jiang Y, S/O Ganesan SS, Zhou M, Nongiur M, Majithia S, Tham YC, Rim TH, Qian C, Koh V, Aung T. From 2 dimensions to third dimension: Quantitative prediction of anterior chamber depth from anterior segment photographs via deep learning. PLOS Digital Health. 2023 Feb 1;2(2): e0000193.
https://doi.org/10.1371/journal.pdig.0000193
PMid:36812642 PMCid:PMC9931242
Wu X, Liu L, Zhao L, Guo C, Li R, Wang T, Yang X, Xie P, Liu Y, Lin H. Application of artificial intelligence in anterior segment ophthalmic diseases: diversity and standardization. Annals of Translational Medicine. 2020 Jun;8(11):714.
https://doi.org/10.21037/atm-20-976
PMid:32617334 PMCid:PMC7327317
Cai W, Xu J, Wang K, Liu X, Xu W, Cai H, Gao Y, Su Y, Zhang M, Zhu J, Zhang CL. EyeHealer: a largescale anterior eye segment dataset with eye structure and lesion annotations. Precision Clinical Medicine. 2021 Jun;4(2):8592.
https://doi.org/10.1093/pcmedi/pbab009
PMid:35694155 PMCid:PMC8982547
Li W, Yang Y, Zhang K, Long E, He L, Zhang L, Zhu Y, Chen C, Liu Z, Wu X, Yun D. Dense anatomical annotation of slitlamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nature Biomedical Engineering. 2020 Aug;4(8):76777.
https://doi.org/10.1038/s41551-020-0577-y
PMid:32572198
Mitry D, Zutis K, Dhillon B, Peto T, Hayat S, Khaw KT, Morgan JE, Moncur W, Trucco E, Foster PJ, UK Biobank Eye and Vision Consortium. The accuracy and reliability of crowdsource annotations of digital retinal images. Translational vision science & technology. 2016 Sep 1;5(5):6.
https://doi.org/10.1167/tvst.5.5.6
PMid:27668130 PMCid:PMC5032847
Camilo EN, Junior AP, Pinheiro HM, da Costa RM. A pupillary image dataset: 10,000 annotated and 258,790 nonannotated images of patients with glaucoma, diabetes, and subjects influenced by alcohol, coupled with a segmentation performance evaluation. Computers in Biology and Medicine. 2025 Mar 1;186:109594.
https://doi.org/10.1016/j.compbiomed.2024.109594
PMid:39753022
Arikan M, Willoughby J, Ongun S, Sallo F, Montesel A, Ahmed H, Hagag A, Book M, Faatz H, Cicinelli MV, Fawzi AA. OCT5k: A dataset of multidisease and multigraded annotations for retinal layers. Scientific data. 2025 Feb 14;12(1):267.
https://doi.org/10.1038/s41597-024-04259-z
PMid:39952954 PMCid:PMC11829038
Xue J, Feng Z, Zeng L, Wang S, Zhou X, Xia J, Deng A. Soul: An octa dataset based on human machine collaborative annotation framework. Scientific Data. 2024 Aug 2;11(1):838.a
https://doi.org/10.1038/s41597-024-03665-7
PMid:39095383 PMCid:PMC11297209
Yang WH, Xu YW, Sun XH. Guidelines for glaucoma imaging classification, annotation, and quality control for artificial intelligence applications. International Journal of Ophthalmology. 2025 Jul 18;18(7):1181.
https://doi.org/10.18240/ijo.2025.07.01
PMid:40688788 PMCid:PMC12207309
Punithavathi IH, GaneshKumar P. Annotation and retrieval of retinal images using support vector machine with active learning. In2019 Ieee International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) 2019 Apr 11 (pp. 16). IEEE.
Chaki J. Applications of Deep LearningBased Image Augmentation. InThe Art of Deep Learning Image Augmentation: The Seeds of Success 2025 May 3 (pp. 7992). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-96-5081-1
Deng L, Lyu J, Huang H, Deng Y, Yuan J, Tang X. The SUSTechSYSU dataset for automatically segmenting and classifying corneal ulcers. Scientific data. 2020 Jan 20;7(1):23.
https://doi.org/10.1038/s41597-020-0360-7
PMid:31959768 PMCid:PMC6971241
Wang Z, Lyu J, Luo W, Tang X. Adjacent scale fusion and corneal position embedding for corneal ulcer segmentation InInternational Workshop on Ophthalmic Medical Image Analysis. Cham: Springer International Publishing. 2021 Sep 21;13075: 110.
https://doi.org/10.1007/978-3-030-87000-3_1
Oliveira A, Pereira S, Silva CA. Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications. 2018 Dec 1;112:22942.
https://doi.org/10.1016/j.eswa.2018.06.034
Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin Jr KW, Chaum E. Exudatebased diabetic macular edema detection in fundus images using publicly available datasets. Medical image analysis. 2012 Jan 1;16(1):21626.
https://doi.org/10.1016/j.media.2011.07.004
PMid:21865074 PMCid:PMC10729314
Kulyabin M, Zhdanov A, Nikiforova A, Stepichev A, Kuznetsova A, Ronkin M, Borisov V, Bogachev A, Korotkich S, Constable PA, Maier A. Octdl: Optical coherence tomography dataset for imagebased deep learning methods. Scientific data. 2024 Apr 11;11(1):365.
https://doi.org/10.1038/s41597-024-03182-7
PMid:38605088 PMCid:PMC11009408
Duwairi RM, AlZboon SA, AlDwairi RA, Obaidi A. A deep learning model and a dataset for diagnosing ophthalmology diseases. Journal of Information & Knowledge Management. 2021 Sep 21;20(03):2150036.
https://doi.org/10.1142/S0219649221500362
Kovalyk O, MoralesSánchez J, VerdúMonedero R, SellésNavarro I, PalazónCabanes A, SanchoGómez JL. PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Scientific Data. 2022 Jun 9;9(1):291.
https://doi.org/10.1038/s41597-022-01388-1
PMid:35680965 PMCid:PMC9184612
Panchal S, Naik A, Kokare M, Pachade S, Naigaonkar R, Phadnis P, Bhange A. Retinal Fundus MultiDisease Image Dataset (RFMiD) 2.0: a dataset of frequently and rarely identified diseases. Data. 2023 Jan 28;8(2):29.
https://doi.org/10.3390/data8020029
Jin K, Huang X, Zhou J, Li Y, Yan Y, Sun Y, Zhang Q, Wang Y, Ye J. Fives: A fundus image dataset for artificial intelligence based vessel segmentation. Scientific data. 2022 Aug 4;9(1):475.
https://doi.org/10.1038/s41597-022-01564-3
PMid:35927290 PMCid:PMC9352679
Saravanan R, Sujatha P. A state of art techniques on machine learning algorithms: a perspective of supervised learning approaches in data classification. In2018 Second international conference on intelligent computing and control systems (ICICCS) 2018 Jun 14 (pp. 945949). IEEE.
https://doi.org/10.1109/ICCONS.2018.8663155
Verma R, Nagar V, Mahapatra S. Introduction to supervised learning. Data Analytics in Bioinformatics: A Machine Learning Perspective. 2021 Feb 1:134.
https://doi.org/10.1002/9781119785620.ch1
Malik MH, Wan Z, Gao Y, Ding DW. Efficient diagnosis of retinal disorders using dualbranch semisupervised learning (DBSSL): An enhanced multiclass classification approach. Computerized Medical Imaging and Graphics. 2025 Apr 1;121:102494.
https://doi.org/10.1016/j.compmedimag.2025.102494
PMid:39914126
Tashkandi A. Eye Care: Predicting Eye Diseases Using Deep Learning Based on Retinal Images. Computation. 2025 Apr 3;13(4):91.
https://doi.org/10.3390/computation13040091
Khan AA, Ahmad KM, Shafiq S, Akram MU, Shao J. ATLASS: An AnaTomicaLlyAware SelfSupervised Learning Framework for Generalizable Retinal Disease Detection. IEEE Journal of Biomedical and Health Informatics. 2025 Aug 6; : .
https://doi.org/10.1109/JBHI.2025.3595697
PMid:40768461
Wang L, Zhang X, Li Z, Yu S, Wu Y, Zhang S, Jiang G, Tian B, Mei C, Pu J, Liang Y. A deep semisupervised learning approach to the detection of glaucoma on outofdistribution retinal fundus image datasets. BMC ophthalmology. 2025 May 30;25(1):326.
https://doi.org/10.1186/s12886-025-04153-1
PMid:40448117 PMCid:PMC12125766
Shim S, Kim MS, Yae CG, Kang YK, Do JR, Kim HK, Yang HL. Development and validation of a multistage selfsupervised learning model for optical coherence tomography image classification. Journal of the American Medical Informatics Association. 2025 May;32(5):80010.
https://doi.org/10.1093/jamia/ocaf021
PMid:40037789 PMCid:PMC12012341
Zhang J, Cui Y, Wu Z, Xi H, Zhu J. OutofDistribution Detection for OpenSet SemiSupervised Medical Image Classification. InProceedings of the 2025 International Conference on Multimedia Retrieval. 2025; :17771785.
https://doi.org/10.1145/3731715.3733412
Ranjith D, Sakthivanitha M. A Novel MultiModal Deep Learning Framework for Early Detection of Ocular Diseases. In2025 International Conference on Intelligent Computing and Control Systems (ICICCS) 2025 Mar 19 (pp. 13401346). IEEE.
https://doi.org/10.1109/ICICCS65191.2025.10985242
Hajamydeen AI, Suhaimy MA, Abdullah MI. Advanced Deep Learning Techniques for Comprehensive Detection of Eye Disease Using Retinal and OCT Imaging. Journal Publication of International Research for Engineering and Management (JOIREM). 2025 Jun;5(06): .
Li JX, Li SH, Tsou PS. Application of Deep Learning Neural Network Architectures in Ocular Disease Classification Models. Journal of Information and Computing. 2025 Jun 28;3(2):1422.
Nasra P, Gupta S, Ravi K, Singh AR. EfficientNetB3Based Deep Learning Approach for Automated Eye Disease Detection. In2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 2025 Apr 9 (pp. 16). IEEE.
https://doi.org/10.1109/OTCON65728.2025.11070729
PMid:40084566
Kansal I, Khullar V, Sharma P, Singh S, Hamid JA, Santhosh AJ. Multiple model visual feature embedding and selection method for an efficient ocular disease classification. Scientific Reports. 2025 Feb 12;15(1):5157.
https://doi.org/10.1038/s41598-024-84922-y
PMid:39934192 PMCid:PMC11814330
Liang X, Luo S, Liu Z, Liu Y, Luo S, Zhang K, Li L. Unsupervised machine learning analysis of optical coherence tomography radiomics features for predicting treatment outcomes in diabetic macular edema. Scientific Reports. 2025 Apr 18;15(1):13389.
https://doi.org/10.1038/s41598-025-96988-3
PMid:40251316 PMCid:PMC12008428
Tang N, Chen Q, Meng Y, Lei D, Jiang L, Qin Y, Huang X, Tang F, Huang S, Lan Q, Chen Q. An explainable unsupervised learning approach for anomaly detection on corneal in vivo confocal microscopy images. Frontiers in Bioengineering and Biotechnology. 2025 Jun 6;13:1576513.
https://doi.org/10.3389/fbioe.2025.1576513
PMid:40547296 PMCid:PMC12179219
Shifani SA, Saraswathy N, Santhi GB, Giri J, AlMousa MR. Empirical Evaluation of RealTime Diabetic Retinopathy Disease Detection using IoT Enabled Medical Imaging Processing Strategy. In2025 International Conference on Electronics and Renewable Systems (ICEARS) 2025 Feb 11 (pp. 526531). IEEE.
https://doi.org/10.1109/ICEARS64219.2025.10940249
Pojoga S, Andrei A, Dragoi V. Unsupervised learning of temporal regularities in visual cortical populations. Nature Communications. 2025 Jul 1;16(1):5614.
https://doi.org/10.1038/s41467-025-60731-3
PMid:40592812 PMCid:PMC12216384

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.