Gene and Biochemical Pathway Evaluation of Burns Injury via Protein-Protein Interaction Network Analysis

Authors

  • Mohammad Rostami-Nejad Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Majid Rezaei-Tavirani Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
  • Vahid Mansouri Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Mostafa Rezaei Tavirani Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Davood Bashash Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Mona Zamanian Azodi Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v8i.1257

Keywords:

Burn, Gene, Biomarker, Protein-Protein Interaction Network, Biochemical Pathway

Abstract

Background: Severe burns injury can affect several vital systems in the body and can cause inflammation in organs such as the heart, liver, and kidney. Many inflammatory mediators and regulatory hormones related to burn injuries are recognized. In this study, the genes related to burn injury interacted via network analysis, and the central nodes were enriched through gene ontology (GO). Materials and Methods: Disease query of STRING database was used for data gathering, and the network was constructed using Cytoscape software version 3.6.0. After gene screening, the central nodes were enriched via GO analysis by ClueGO. The highlighted genes and pathways were clustered and analyzed in detail. Results: Among 1067 genes, 35 critical genes that are involved in the 14 highlighted biochemical pathways were recognized. Interpretation of the finding indicates that a number of central genes can be considered as potential biomarkers related to burn injury. Conclusion: Can we revise to “Burn injuries have features that are common to several  diseases and increases their risk. [GMJ.2019;8:e1257] 

References

Kaddoura I, Abu-Sittah G, Ibrahim A, Karamanoukian R, Papazian N. Burn injury: review of pathophysiology and therapeutic modalities in major burns. Ann Burns Fire Disasters. 2017;30(2):95. Aulick LH, Wilmore DW, Mason Jr A, Pruitt Jr B. Influence of the burn wound on peripheral circulation in thermally injured patients. Am J Physiol. 1977;233(4):H520-26. https://doi.org/10.1152/ajpheart.1977.233.4.H520PMid:910969 Settle JA. Fluid therapy in burns. J R Soc Med. 1982;75(Suppl 1):6-11. Herndon D, Abston S, Stein M. Increased thromboxane B2 levels in the plasma of burned and septic burned patients. Surg Gynecol Obstet.1984;159(3):210-3. Morykwas MJ, David LR, Schneider AM, Whang C, Jennings DA, Canty C, et al. Use of subatmospheric pressure to prevent progression of partial-thickness burns in a swine model. J Burn Care Rehabil. 1999;20(suppl_1_pt_1):15-21. https://doi.org/10.1097/00004630-199901001-00003 Qian W-J, Petritis BO, Kaushal A, Finnerty CC, Jeschke MG, Monroe ME, et al. Plasma proteome response to severe burn injury revealed by 18O-labeled "universal" reference-based quantitative proteomics. J Proteome Res. 2010;9(9):4779-89. https://doi.org/10.1021/pr1005026PMid:20698492 PMCid:PMC2945297 Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110(9):3507-12. https://doi.org/10.1073/pnas.1222878110PMid:23401516 PMCid:PMC3587220 Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench. 2014;7(1):17-31. Maghvan PV, Rezaei-Tavirani M, Zali H, Nikzamir A, Abdi S, Khodadoostan M, et al. Network analysis of common genes related to esophageal, gastric, and colon cancers. Gastroenterol Hepatol Bed Bench. 2017;10(4):295-302. Rezaei-Tavirani M, Rezaei-Tavirani S, Ahmadi N, Naderi N, Abdi S. Pancreatic adenocarcinoma protein-protein interaction network analysis. Gastroenterol Hepatol Bed Bench. 2017;10(Suppl1):S85-S92. Safaei A, Tavirani MR, Azodi MZ, Lashay A, Mohammadi SF, Broumand MG, et al. Diabetic Retinopathy and Laser Therapy in Rats: A Protein-Protein Interaction Network Analysis. J Lasers Med Sci. 2017;8(Suppl 1):S20-S21. https://doi.org/10.15171/jlms.2017.s4PMid:29071030 PMCid:PMC5642173 Zali H, Rezaei Tavirani M. Meningioma protein-protein interaction network. Arch Iran Med. 2014;17(4):262-72. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221-33. https://doi.org/10.1016/j.cell.2005.05.011PMid:16051147 Henquin J-C, Ibrahim MM, Rahier J. Insulin, glucagon and somatostatin stores in the pancreas of subjects with type-2 diabetes and their lean and obese non-diabetic controls. Sci Reports. 2017;7(1):11015. https://doi.org/10.1038/s41598-017-10296-zPMid:28887444 PMCid:PMC5591190 Young CD, Anderson SM. Sugar and fat-that's where it's at: metabolic changes in tumors. Breast Cancer Res. 2008;10(1):202. https://doi.org/10.1186/bcr1852PMid:18304378 PMCid:PMC2374962 Colell A, Green D, Ricci J. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009;16(12):1573. https://doi.org/10.1038/cdd.2009.137PMid:19779498 Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science. 2002;297(5579):240-3. https://doi.org/10.1126/science.1071527PMid:12114623 Wadhwa R, Song S, Lee J-S, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10(11):643. https://doi.org/10.1038/nrclinonc.2013.170PMid:24061039 PMCid:PMC3927982 Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer. 2005;41(16):2449-61. https://doi.org/10.1016/j.ejca.2005.08.008PMid:16199154 Hollern D, Yuwanita I, Andrechek E. A mouse model with T58A mutations in Myc reduces the dependence on KRas mutations and has similarities to claudin-low human breast cancer. Oncogene. 2013;32(10):1296. https://doi.org/10.1038/onc.2012.142PMid:22525269 Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127(3):701-21. https://doi.org/10.1016/j.jaci.2010.11.050PMid:21377040 Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2000;97(21):11307-12. https://doi.org/10.1073/pnas.97.21.11307PMid:11027332 PMCid:PMC17196 Means AR, VanBerkum MF, Bagchi I, Lu KP, Rasmussen CD. Regulatory functions of calmodulin. Pharmacol Ther. 1991;50(2):255-70. https://doi.org/10.1016/0163-7258(91)90017-G Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perles B, Thieffry D. Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput Biol. 2013;9(10):e1003286. https://doi.org/10.1371/journal.pcbi.1003286PMid:24250280 PMCid:PMC3821540 Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334. https://doi.org/10.1038/348334a0PMid:2250705 Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99. https://doi.org/10.1038/sj.cdd.4400476PMid:10200555 Eljaiek R, Heylbroeck C, Dubois M-J. Albumin administration for fluid resuscitation in burn patients: A systematic review and meta-analysis. Burns. 2017;43(1):17-24. https://doi.org/10.1016/j.burns.2016.08.001PMid:27613476 Doig GS. Albumin may significantly increase mortality in burn patients: Re-analysis of a systematic review. Burns. 2017;43(2):449-50. https://doi.org/10.1016/j.burns.2016.09.033PMid:27884408 Wilmore DW, Aulick LH. Metabolic changes in burned patients. Surg Clin North Am. 1978;58(6):1173-87. https://doi.org/10.1016/S0039-6109(16)41685-3 Lu X-M, Tompkins RG, Fischman A. Nitric oxide activates intradomain disulfide bond formation in the kinase loop of Akt1/PKBα after burn injury. Int J Mol Med. 2013;31(3):740-50. https://doi.org/10.3892/ijmm.2013.1241PMid:23314241 PMCid:PMC3597556 Luo G, Peng D, Zheng J, Chen X, Wu J, Elster E, et al. The role of NO in macrophage dysfunction at early stage after burn injury. Burns. 2005;31(2):138-44. https://doi.org/10.1016/j.burns.2004.09.009PMid:15683683 McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46(1):249-79. https://doi.org/10.1016/j.advenzreg.2006.01.004PMid:16854453 Guo Y, Dickerson C, Chrest FJ, Adler WH, Munster AM, Winchurch RA. Increased levels of circulating interleukin 6 in burn patients. Clin Immunol Immunopathol. 1990;54(3):361-71. https://doi.org/10.1016/0090-1229(90)90050-Z Cannon JG, Friedberg JS, Gelfand JA, Tompkins RG, Burke JF, Dinarello CA. Circulating interleukin-1 beta and tumor necrosis factor-alpha concentrations after burn injury in humans. Crit Care Med. 1992;20(10):1414-9. https://doi.org/10.1097/00003246-199210000-00009PMid:1395662 Chollet-Martin S, Hernvann A, Lioret N, Lim S, Vaubourdolle M, Guechot J, et al. Cytokine response to burn injury: relationship with protein metabolism. J Trauma. 1994;36(5):624-8. https://doi.org/10.1097/00005373-199405000-00004PMid:8189461 Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Curtsinger III LJ, et al. Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med. 1989;321(2):76-9. https://doi.org/10.1056/NEJM198907133210203PMid:2659995 Wilson Y, Goberdhan N, Dawson R, Smith J, Freedlander E, Mac Neil S. Investigation of the presence and role of calmodulin and other mitogens in human burn blister fluid. J Burn Care Rehabil. 1994;15(4):303-14. https://doi.org/10.1097/00004630-199407000-00004PMid:7929511 WJ Z, SF Z. Influence of oxidative stress on apoptosis and expression of bax and bcl-2 of enterocytes in burn rats with delayed resuscitation on the plateau. Zhonghua Shao Shang Za Zhi. 2009;25(4):289-93. Aykac A, Karanlik B, Sehirli AO. Protective effect of silk fibroin in burn injury in rat model. Gene. 2018;641:287-91. https://doi.org/10.1016/j.gene.2017.10.036PMid:29037999 Dubois B, Epelbaum S, Nyasse F, Bakardjian H, Gagliardi G, Uspenskaya O, et al. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol. 2018;17(4):335-46. https://doi.org/10.1016/S1474-4422(18)30029-2 Stevenson B, Steelman J, Zimmerman LH, Bullard Z, Jurado L, Alsina G, et al. 936: Does Thrombin Dose Matter For Intraoperative Hemostasis? A Retrospective Case-controlled Study. Critical Care Med. 2018;46(1):451. https://doi.org/10.1097/01.ccm.0000528943.37373.33 Lei JT, Shao J, Zhang J, Iglesia M, Chan DW, Cao J, et al. Abstract PD8-03: ESR1 gene fusions drive endocrine therapy resistance and metastasis in breast cancer. Cancer Res. 2018;78(4 Supplement):PD8-03-PD8-. https://doi.org/10.1158/1538-7445.SABCS17-PD8-03 Morris RS, Schaffer BS, Lundy JB, Pidcoke HF, Chung KK, Darlington DN, et al. Immunopathological response to severe injury: platelet activation and the Th-17 immune response. Blood Coagul Fibrinolysis. 2018;29(1):48-54. https://doi.org/10.1097/MBC.0000000000000665PMid:28957941 Kang I, Chang MY, Wight TN, Frevert CW. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem. 2018;66(4):241-259. https://doi.org/10.1369/0022155417751880PMid:29328866 PMCid:PMC5958380

Additional Files

Published

2019-08-07

Issue

Section

Original Article