Expression of Bioinformatically Candidate miRNAs including, miR-576-5p, miR-501-3p and miR-3143, Targeting PI3K Pathway in Triple-Negative Breast Cancer

Authors

  • Javad Razaviyan 1. Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran 2. Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
  • Razie Hadavi 1. Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran 2. Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
  • Ameneh Koochaki Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Parviz Kokhaei Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
  • Ahmadreza Bandegi 1. Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran 2. Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
  • Samira Mohammadi-Yeganeh 1. Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran 2. Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v8i.1646

Keywords:

Triple Negative Breast Cancer, MicroRNA, PIK3CA, AKT1, Bioinformatics

Abstract

Background: Triple-negative breast cancer (TNBC) is an invasive and lethal form of breast cancer. PI3K pathway, which often activated in TNBC patients, can be a target of miRNAs. The purpose of this study was bioinformatic prediction of miRNAs targeting the key genes of this pathway and evaluation of the expression of them and their targets in TNBC. Materials and Methods: We predicted miRNAs targeting PIK3CA and AKT1 genes using bioinformatics tools. Extraction of total RNA, synthesis of cDNA and quantitative real-time polymerase chain reaction were performed from 18 TNBC samples and normal adjacent tissues and cell lines. Results: Our results demonstrated that miR-576-5p, miR-501-3p and miR-3143 were predicted to target PIK3CA, AKT1 and both of these mRNAs, respectively and were down-regulated while their target mRNAs were up-regulated in clinical samples and cell lines. The analysis of the receiver operating characteristic curve was done for the evaluation of the diagnostic value of predicted miRNAs in TNBC patients. Conclusion: The findings of our study demonstrated the reverse correlation between miRNAs and their target genes and therefore the possibility of these miRNAs to be proposed as new candidates for TNBC targeted therapies. [GMJ.2019;8:e1646]

References

Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev. 2016;17(S3):43-6. https://doi.org/10.7314/APJCP.2016.17.S3.43PMid:27165206 Cao Z-G, Li J-J, Yao L, Huang Y-N, Liu Y-R, Hu X et al. High expression of microRNA-454 is associated with poor prognosis in triple-negative breast cancer. Oncotarget. 2016;7(40):64900-909. https://doi.org/10.18632/oncotarget.11764 Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H et al. Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses Cysteine. Cell. 2016;166(1):126-39. https://doi.org/10.1016/j.cell.2016.05.042PMid:27368101 PMCid:PMC4930557 Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell. 2015;163(1):174-86. https://doi.org/10.1016/j.cell.2015.08.063PMid:26406377 PMCid:PMC4583659 Mohammadi-Yeganeh S, Mansouri A, Paryan M. Targeting Of miR9/NOTCH1 Interaction Reduces Metastatic Behavior in Triple-negative Breast Cancer. Chem Biol Drug Des. 2015;86(5):1185-91. https://doi.org/10.1111/cbdd.12584PMid:25963903 Zhang K, Zhang Y, Liu C, Xiong Y, Zhang J. MicroRNAs in the diagnosis and prognosis of breast cancer and their therapeutic potential (review). Int J Oncol. 2014;45(3):950-8. https://doi.org/10.3892/ijo.2014.2487PMid:24913679 Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, Horiguchi J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet. 2017;62(1):15-24. https://doi.org/10.1038/jhg.2016.89PMid:27439682 Mulrane L, McGee SF, Gallagher WM, O'Connor DP. miRNA dysregulation in breast cancer. Cancer Res. 2013;73(22):6554-62. https://doi.org/10.1158/0008-5472.CAN-13-1841PMid:24204025 Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321-33. https://doi.org/10.1038/nrc3932PMid:25998712 PMCid:PMC4859809 Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 2015;16(1):18-31. https://doi.org/10.1631/jzus.B1400184PMid:25559952 PMCid:PMC4288941 Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Kerin MJ. MicroRNAs as Novel Biomarkers for Breast Cancer. J Oncol. 2009;2009:950201, 7 pages. https://doi.org/10.1155/2010/950201PMid:19639033 PMCid:PMC2712985 Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194. https://doi.org/10.1038/mtna.2014.47PMid:25247240 PMCid:PMC4222652 Singh R, Mo YY. Role of microRNAs in breast cancer. Cancer Biol Ther. 2013;14(3):201-12. https://doi.org/10.4161/cbt.23296PMid:23291983 PMCid:PMC3595302 Cidado J, Park BH. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia. 2012;17 (3-4):205-16. https://doi.org/10.1007/s10911-012-9264-2PMid:22865098 PMCid:PMC3724399 Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway--beyond rapalogs. Oncotarget. 2010;1(7):530-43. https://doi.org/10.18632/oncotarget.188PMid:21317449 PMCid:PMC3248125 Paplomata E, O'Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol. 2014;6(4):154-66. https://doi.org/10.1177/1758834014530023PMid:25057302 PMCid:PMC4107712 Huemer F, Bartsch R, Gnant M. The PI3K/AKT/MTOR Signaling Pathway: The Role of PI3K and AKT Inhibitors in Breast Cancer. Curr Breast Cancer Rep. 2014;6(2):59-70. https://doi.org/10.1007/s12609-014-0139-y Karami F, Mohammadi-Yeganeh S, Abedi N, Koochaki A, Kia V, Paryan M. Bioinformatics Prediction and In Vitro Analysis Revealed That miR-17 Targets Cyclin D1 mRNA in Triple Negative Breast Cancer Cells.Chem Biol Drug Des. 2016;87(3):317-20. https://doi.org/10.1111/cbdd.12671PMid:26431674 Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682-8. https://doi.org/10.1038/nature06174PMid:17898713 Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90. https://doi.org/10.1186/gb-2010-11-8-r90PMid:20799968 PMCid:PMC2945792 Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common features of microRNA target prediction tools. Frontiers in genetics. 2014;5:23. https://doi.org/10.3389/fgene.2014.00023PMid:24600468 PMCid:PMC3927079 Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. https://doi.org/10.7554/eLife.05005PMid:26267216 PMCid:PMC4532895 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(suppl 1):D154-D8. https://doi.org/10.1093/nar/gkm952PMid:17991681 PMCid:PMC2238936 Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M et al. DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41(W1):W169-W73. https://doi.org/10.1093/nar/gkt393PMid:23680784 PMCid:PMC3692048 Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA. org resource: targets and expression. Nucleic Acids Res. 2008;36(suppl 1):D149-D53. https://doi.org/10.1093/nar/gkm995PMid:18158296 PMCid:PMC2238905 Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S. microPIR: an integrated database of microRNA target sites within human promoter sequences. PloS one. 2012;7(3):e33888. https://doi.org/10.1371/journal.pone.0033888PMid:22439011 PMCid:PMC3306312 Chou C-H, Chang N-W, Shrestha S, Hsu S-D, Lin Y-L, Lee W-H et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239-D47. https://doi.org/10.1093/nar/gkv1258PMid:26590260 PMCid:PMC4702890 Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2014:gku1104. https://doi.org/10.1093/nar/gku1104PMid:25378301 PMCid:PMC4383922 Dweep H, Gretz N. miRWalk2. 0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697. https://doi.org/10.1038/nmeth.3485PMid:26226356 Hsu S-D, Chu C-H, Tsou A-P, Chen S-J, Chen H-C, Hsu PW-C et al. miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 2008;36(suppl 1):D165-D9. https://doi.org/10.1093/nar/gkm1012PMid:18029362 PMCid:PMC2238982 Cho S, Jang I, Jun Y, Yoon S, Ko M, Kwon Y et al. MiRGator v3. 0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2012;41(D1):D252-D7. https://doi.org/10.1093/nar/gks1168PMid:23193297 PMCid:PMC3531224 Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18(10):1139-46. https://doi.org/10.1038/nsmb.2115PMid:21909094 PMCid:PMC3190056 Mohammadi-Yeganeh S, Paryan M, Samiee SM, Soleimani M, Arefian E, Azadmanesh K et al. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep. 2013;40(5):3665-74. https://doi.org/10.1007/s11033-012-2442-xPMid:23307300 Mohammadi Yeganeh S, Vasei M, Tavakoli R, Kia V, Paryan M. The effect of miR-340 over-expression on cell-cycle-related genes in triple-negative breast cancer cells. Eur J Cancer Care (Engl). 2016; 6: e12496. https://doi.org/10.1111/ecc.12496PMid:27229858 Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156(5):893-906. https://doi.org/10.1016/j.cell.2013.12.043PMid:24581491 PMCid:PMC3982296 Cimino D, De Pittà C, Orso F, Zampini M, Casara S, Penna E et al. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. The FASEB Journal. 2013;27(3):1223-35. https://doi.org/10.1096/fj.12-214692PMid:23233531 D'Ippolito E, Iorio MV. MicroRNAs and triple negative breast cancer. Int J Mol Sci. 2013;14(11):22202-20. https://doi.org/10.3390/ijms141122202PMid:24284394 PMCid:PMC3856060 Massihnia D, Galvano A, Fanale D, Perez A, Castiglia M, Incorvaia L et al. Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget. 2016; 7(37): 60712-60722. https://doi.org/10.18632/oncotarget.10858PMid:27474173 PMCid:PMC5312414 Adams JR, Schachter NF, Liu JC, Zacksenhaus E, Egan SE. Elevated PI3K signaling drives multiple breast cancer subtypes. Oncotarget. 2011;2:435-47. https://doi.org/10.18632/oncotarget.285PMid:21646685 PMCid:PMC3248195 de Lint K, Poell JB, Soueidan H, Jastrzebski K, Rodriguez JV, Lieftink C et al. Sensitizing Triple-Negative Breast Cancer to PI3K Inhibition by Cotargeting IGF1R. Mol Cancer Ther. 2016;15(7):1545-56. https://doi.org/10.1158/1535-7163.MCT-15-0865PMid:27196766 Rudolph M, Anzeneder T, Schulz A, Beckmann G, Byrne AT, Jeffers M et al. AKT1 E17K mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection. BMC cancer. 2016;16(1):622. https://doi.org/10.1186/s12885-016-2626-1PMid:27515171 PMCid:PMC4982009 Cossu-Rocca P, Orrù S, Muroni MR, Sanges F, Sotgiu G, Ena S et al. Analysis of PIK3CA mutations and activation pathways in triple negative breast cancer. PLoS One. 2015;10(11):e0141763. https://doi.org/10.1371/journal.pone.0141763PMid:26540293 PMCid:PMC4634768 Aleskandarany MA, Rakha EA, Ahmed MA, Powe DG, Paish EC, Macmillan RD et al. PIK3CA expression in invasive breast cancer: a biomarker of poor prognosis. Breast Cancer Res Treat. 2010;122(1):45-53. https://doi.org/10.1007/s10549-009-0508-9PMid:19701705 Ahmad S, Singh N, Glazer RI. Role of AKT1 in 17β-estradiol-and insulin-like growth factor I (IGF-I)-dependent proliferation and prevention of apoptosis in MCF-7 breast carcinoma cells. Biochem Pharmacol. 1999;58(3):425-30. https://doi.org/10.1016/S0006-2952(99)00125-2 Sun M, Wang G, Paciga JE, Feldman RI, Yuan Z-Q, Ma X-L et al. AKT1/PKBα kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol. 2001;159(2):431-7. https://doi.org/10.1016/S0002-9440(10)61714-2 Zhang G, Liu Z, Xu H, Yang Q. miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1. Biochem Biophys Res Commun. 2016;469(2):189-95. https://doi.org/10.1016/j.bbrc.2015.11.099PMid:26631969 Razaviyan J, Hadavi R, Mohammadi-Yeganeh S. Expression Analysis of miRNAs Targeting PIK3CA and AKT1 Genes of PI3K Signaling Pathway in Breast Cancer Cells. GMJ. 2017;6(4):338-45. Mairinger FD, Ting S, Werner R, Walter RFH, Hager T, Vollbrecht C et al. Different micro-RNA expression profiles distinguish subtypes of neuroendocrine tumors of the lung: results of a profiling study. Mod Pathol. 2014;27(12):1632-40. https://doi.org/10.1038/modpathol.2014.74PMid:24875640 Dong L, Li Y, Han C, Wang X, She L, Zhang H. miRNA microarray reveals specific expression in the peripheral blood of glioblastoma patients. Int J Oncol. 2014;45(2):746-56. https://doi.org/10.3892/ijo.2014.2459PMid:24858071 Díaz-Prado S, Cicione C, Muiños-López E, Hermida-Gómez T, Oreiro N, Fernández-López C et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 2012;13(1):144. https://doi.org/10.1186/1471-2474-13-144PMid:22883423 PMCid:PMC3495209 Soronen J, Yki-Järvinen H, Zhou Y, Sädevirta S, Sarin AP, Leivonen M et al. Novel hepatic microRNAs upregulated in human nonalcoholic fatty liver disease. Physiol Rep. 2016;4(1):e12661. https://doi.org/10.14814/phy2.12661PMid:26733244 PMCid:PMC4760405 Haldrup C, Kosaka N, Ochiya T, Borre M, Høyer S, Orntoft TF et al. Profiling of circulating microRNAs for prostate cancer biomarker discovery. Drug Deliv Transl Res. 2014;4(1):19-30. https://doi.org/10.1007/s13346-013-0169-4PMid:25786615 Yılmaz ŞG, Geyik S, Neyal AM, Soko ND, Bozkurt H, Dandara C. Hypothesis: Do miRNAs Targeting the Leucine-Rich Repeat Kinase 2 Gene (LRRK2) Influence Parkinson's Disease Susceptibility? Omics. 2016;20(4):224-8. https://doi.org/10.1089/omi.2016.0040PMid:27093107

Published

2019-11-10

How to Cite

Razaviyan, J., Hadavi, R., Koochaki, A., Kokhaei, P., Bandegi, A., & Mohammadi-Yeganeh, S. (2019). Expression of Bioinformatically Candidate miRNAs including, miR-576-5p, miR-501-3p and miR-3143, Targeting PI3K Pathway in Triple-Negative Breast Cancer: . Galen Medical Journal, 8, e1646. https://doi.org/10.31661/gmj.v8i.1646

Issue

Section

Original Article