Fe2O3 Magnetic Nanoparticles and Curcumin Improved Sperm Parameters in Rats with Scrotal Hyperthermia

Authors

  • Mehrdad Hashemi 2. Department of Genetics, Faculty of Advanced Science and Technology, Islamic Azad University, Tehran, Iran 
 3. Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
  • Maryam Mollaei 1. Department of Genetics, Faculty of biosciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Elham Siasi 1. Department of Genetics, Faculty of biosciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Sayeh Jafari Marandi 1. Department of Genetics, Faculty of biosciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Malihe Entezari 2. Department of Genetics, Faculty of Advanced Science and Technology, Islamic Azad University, Tehran, Iran 
 3. Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v10i.2014

Keywords:

Sperms, Rats, Fe2O3, Scrotal Hyperthermia

Abstract

Background: Testicular function depends on temperature, and it has been shown that scrotal hyperthermia causes a sharp decrease in sperm parameters due to oxidative stress. In recent years, the use of natural materials from the plant and nanoparticles has attracted much attention. Therefore, the present study aimed to investigate the effect of curcumin and Fe2O3 nanoparticles on sperm parameters in rats. Materials and Methods: After preparing the rats, they were placed in a hot water bath at 43°C for 30 minutes for six consecutive days. The 48 rats were then divided into eight groups. A concentration of 0.03 mg/kg body weight magnetic Fe2O3 nanoparticles and curcumin at the concentration of 0.02 mg/kg body weight were used. After killing animals, the semen parameters such as viability, concentration, motility, and morphology of sperm were studied. Results: Significant differences were observed in all groups of rats in terms of semen parameters (P<0.001). The results showed a positive effect of curcumin on improving semen parameters in scrotal hyperthermia rats and a negative and toxic effect of Fe2O3 magnetic nanoparticles. However, significant improvement in sperm parameters was observed when Fe2O3 magnetic nanoparticles were given to rats along with curcumin. Conclusion: Curcumin has a positive and significant effect on improving sperm parameters in scrotal hyperthermia conditions. Fe2O3 magnetic nanoparticles, if co-administered with curcumin, can significantly improve sperm parameters. In this regard, green synthesis of nanoparticles and concomitant administration of antioxidants such as curcumin in scrotal hyperthermia conditions is recommended. [GMJ.2021;10:e2014]

References

Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28(4):877-85. https://doi.org/10.1093/humrep/det020PMid:23411620 Pelliccione F, Micillo A, Cordeschi G, D'Angeli A, Necozione S, Gandini L, et al. Altered ultrastructure of mitochondrial membranes is strongly associated with unexplained asthenozoospermia. Fertil. 2011;95(2):641-6. https://doi.org/10.1016/j.fertnstert.2010.07.1086PMid:20840880 Takahashi M. Heat stress on reproductive function and fertility in mammals. Reprod Med Biol. 2012;11(1):37-47. https://doi.org/10.1007/s12522-011-0105-6PMid:29699104 PMCid:PMC5904646 Mieusset R, Bujan L, Mondinat C, Mansat A, Pontonnier F, Grandjean H. Association of scrotal hyperthermia with impaired spermatogenesis in infertile men. Fertil. 1987;48(6):1006-11. https://doi.org/10.1016/S0015-0282(16)59600-9 Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod. 2001;65(1):229-39. https://doi.org/10.1095/biolreprod65.1.229PMid:11420244 Ruiz-Pesini E, Lapeña AC, DıÌez C, Ãlvarez E, EnrıÌquez JA, López-Pérez MJ. Seminal quality correlates with mitochondrial functionality. Clin Chim. Acta. 2000;300(1-2):97-105. https://doi.org/10.1016/S0009-8981(00)00305-3 Jagetia GC. Radioprotection and radiosensitization by curcumin. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease: Springer; 2007: 301-20. https://doi.org/10.1007/978-0-387-46401-5_13PMid:17569217 Free M, Schluntz G, Jaffe R. Respiratory gas tensions in tissues and fluids of the male rat reproductive tract. Biol Reprod. 1976;14(4):481-8. https://doi.org/10.1095/biolreprod14.4.481PMid:6085 Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol. Appl. Pharmacol. 2004;199(3):316-31. https://doi.org/10.1016/j.taap.2004.01.018PMid:15364547 Ahmadi F. Effect of turmeric (Curcumin longa) powder on performance, oxidative stress state and some of blood parameters in broiler fed on diets containing aflatoxin B1. Glob Vet. 2010;5(6):312-7. Khan RU, Naz S, Javdani M, Nikousefat Z, Selvaggi M, Tufarelli V, et al. The use of turmeric (Curcuma longa) in poultry feed. Poult Sci J. 2012;68(1):97-103. https://doi.org/10.1017/S0043933912000104 Aktas C, Kanter M, Erboga M, Ozturk S. Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health. 2012;28(2):122-30. https://doi.org/10.1177/0748233711407242PMid:21632575 Sudjarwo SA, Giftania Wardani Sudjarwo K. Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Res Pharm Sci. 2017;12(5):381. https://doi.org/10.4103/1735-5362.213983PMid:28974976 PMCid:PMC5615868 Sharaf H, Morsy F, Shaffie N, El-Shennawy A. Histological and histochemical study on the protective effect of curcumin on ultraviolet irradiation induced testicular damage in albino rats. J Cytol Histol. 2012;3(6):159-66. Grynkiewicz G, Åšlifirski P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim. Pol. 2012;59(2): 201-12. https://doi.org/10.18388/abp.2012_2139PMid:22590694 Tronc E, Ezzir A, Cherkaoui R, Chanéac C, Noguès M, Kachkachi H, et al. Surface-related properties of γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 2000;221(1):63-79. https://doi.org/10.1016/S0304-8853(00)00369-3 Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv Rev. 2011;63(1-2):24-46. https://doi.org/10.1016/j.addr.2010.05.006PMid:20685224 Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today Commun. 2011;14(7-8):330-8. https://doi.org/10.1016/S1369-7021(11)70163-8 Nasr-Esfahani MH, Aboutorabi R, Esfandiari E, Mardani M. Sperm MTT viability assay: a new method for evaluation of human sperm viability. J. Assist Reprod Genet. 2002;19(10):477-82. https://doi.org/10.1023/A:1020310503143PMid:12416652 PMCid:PMC3455683 Paul C, Teng S, Saunders PT. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod. 2009;80(5):913-9. https://doi.org/10.1095/biolreprod.108.071779PMid:19144962 PMCid:PMC2709966 Piper JT, Singhal SS, Salameh MS, Torman RT, Awasthi YC, Awasthi S. Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver. Inz J Biochem. 1998;30(4):445-56. https://doi.org/10.1016/S1357-2725(98)00015-6 Reddy ACP, Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem. 1994;137(1):1-8. https://doi.org/10.1007/BF00926033PMid:7845373 Lin C, Shin D-G, Park SG, Chu SB, Gwon LW, Lee J-G, et al. Curcumin dose-dependently improves spermatogenic disorders induced by scrotal heat stress in mice. Food Funct. 2015;6(12):3770-7. https://doi.org/10.1039/C5FO00726GPMid:26412282 Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521-31. https://doi.org/10.1166/jnn.2004.081PMid:15503438 Chen Y, Xue Z, Zheng D, Xia K, Zhao Y, Liu T, et al. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr Gene Ther. 2003;3(3):273-9. https://doi.org/10.2174/1566523034578339PMid:12762484 Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412-9. https://doi.org/10.1093/toxsci/kfi256PMid:16014736 PMCid:PMC2911231 Moridian M, Khorsandi L, Talebi A. Morphometric and stereological assessment of the effects of zinc oxide nanoparticles on the mouse testicular tissue. Bratisl Lek. 2015;116(5):321. https://doi.org/10.4149/BLL_2015_060PMid:25924642 Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622-7. https://doi.org/10.1126/science.1114397PMid:16456071 Duan J, Yu Y, Yu Y, Li Y, Wang J, Geng W, et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomedicine. 2014;9:5131-41. https://doi.org/10.2147/IJN.S71074PMid:25395850 PMCid:PMC4227623 Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-50. https://doi.org/10.1039/c1gc15386b

Published

2021-12-07

How to Cite

Hashemi, M., Mollaei, M. ., Siasi, . E., Marandi, S. J. ., & Entezari, . M. (2021). Fe2O3 Magnetic Nanoparticles and Curcumin Improved Sperm Parameters in Rats with Scrotal Hyperthermia: . Galen Medical Journal, 10, e2014. https://doi.org/10.31661/gmj.v10i.2014

Issue

Section

Original Article