Prevalence of JAK2V617F, CALR in Philadelphia Positive and Negative Myeloproliferative Neoplasm
DOI:
https://doi.org/10.31661/gmj.v10i.2127Keywords:
Myeloproliferative Neoplasms, Genetic Abnormality, CALR, JAK2, Philadelphia ChromosomeAbstract
Background: Myeloproliferative neoplasms (MPNs) are heterogeneous disorders with a variety of genetic abnormalities. We aim to assess the prevalence of Calreticulin (CALR) and JAK2 mutations in Iranian MPNs. Materials and Methods: In a cross-sectional study, CALR and JAK2 mutations among 130 MPNs patients, including 78 Philadelphia chromosome-negative (MPN-) and 52 Philadelphia chromosome-positive (MPN+) as well as 51 healthy control subjects, were investigated by GAP-PCR. Results: In MPN- group JAK2 and CALR gene mutations were found in 64.1% and 7.7%, respectively, that 5.1% were positive for both mutations, and 2.6% had only CALR mutation. In polycythemia vera (PV) patients 90% had JAK2 mutation, which was significantly higher than other MPN- or MPN+ patients. Most of the MPN+ patients had neither mutation in CALR nor JAK2 (70% CALR-/JAK2-). Among all patients’ groups, the prevalence of CALR+ mutation in either rs1450785140 (4 cases) or rs765476509 (5 cases) position was not statistically different. Conclusion: These results showed a low prevalence of CALR mutations in all types of MPNs in the Iranian population that its frequency may influence by ethnicity and genetic diversity. CALR mutation may be seen in JAK2 negative cases, also. The PV had the highest JAK2 mutation with a 90 percent positivity rate among MPNs cases. [GMJ.2021;10:e2127]
References
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. https://doi.org/10.1182/blood-2016-03-643544PMid:27069254 Wong WJ, Pozdnyakova O. Myeloproliferative neoplasms: Diagnostic workup of the cythemic patient.Int J Lab Hematol. 2019;41 suppl:142-50. https://doi.org/10.1111/ijlh.13005PMid:31069979 Zhou T, Medeiros LJ, Hu S. Chronic Myeloid Leukemia: Beyond BCR-ABL1. Curr Hematol Malig Rep. 2018;13(6):435-45. https://doi.org/10.1007/s11899-018-0474-6PMid:30370478 O'Sullivan J, Mead AJ. Heterogeneity in myeloproliferative neoplasms: Causes and consequences. Adv Biol Regul. 2019;71:55-68. https://doi.org/10.1016/j.jbior.2018.11.007PMid:30528537 James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144-8. https://doi.org/10.1038/nature03546PMid:15793561 Gango A, Mozes R, Boha Z, Kajtar B, Timar B, Kiraly PA, et al. Quantitative assessment of JAK2 V617F and CALR mutations in Philadelphia negative myeloproliferative neoplasms. Leuk Res. 2018;65:42-8. https://doi.org/10.1016/j.leukres.2017.12.005PMid:29306106 Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379-90. https://doi.org/10.1056/NEJMoa1311347PMid:24325356 Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123(24):3714-9. https://doi.org/10.1182/blood-2014-03-530865PMid:24786775 Langabeer SE, Andrikovics H, Asp J, Bellosillo B, Carillo S, Haslam K et al. Molecular diagnostics of myeloproliferative neoplasms. Eur J Haematol. 2015;95(4):270-9. https://doi.org/10.1111/ejh.12578PMid:25951317 Nangalia J, Green TR. The evolving genomic landscape of myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2014;2014(1):287-96. https://doi.org/10.1182/asheducation-2014.1.287PMid:25696868 Bilbao-Sieyro C, Florido Y, Gómez-Casares MT. CALR mutation characterization in myeloproliferative neoplasms. Oncotarget. 2016;7(33):52614-7. https://doi.org/10.18632/oncotarget.10376PMid:27384487 PMCid:PMC5288135 Giannopoulos A, Rougkala N, Loupis T, Mantzourani M, Viniou N-A, Variami E et al. Detection of CALR Mutations Using High Resolution Melting Curve Analysis (HRM-A); Application on a Large Cohort of Greek ET and MF Patients. Mediterr J Hematol Infect Dis. 2019;11(1):e2019009. https://doi.org/10.4084/mjhid.2019.009PMid:30671215 PMCid:PMC6328041 Wong WJ, Hasserjian RP, Pinkus GS, Breyfogle LJ, Mullally A, Pozdnyakova O. JAK2, CALR, MPL and ASXL1 mutational status correlates with distinct histological features in Philadelphia chromosome-negative myeloproliferative neoplasms. Haematologica. 2018;103(2):e63-e8. https://doi.org/10.3324/haematol.2017.178988PMid:29146710 PMCid:PMC5792288 Imai M, Araki M, Komatsu N. Somatic mutations of calreticulin in myeloproliferative neoplasms. Int J Hematol. 2017;105(6):743-7. https://doi.org/10.1007/s12185-017-2246-9PMid:28470469 Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2010;2(63):63-94. https://doi.org/10.1126/scitranslmed.3001375PMid:21178137 PMCid:PMC4126904 Poopak B, Hagh MF, Saki N, Elahi F, Rezvani H, Khosravipour G et al. JAK2 V617F mutation in Iranian patients with myeloproliferative neoplasms: clinical and laboratory findings. Turkish Journal of Medical Sciences. 2013;43(3):347-53. https://doi.org/10.3906/sag-1205-11 Hamid M, Shahbazi Z. Prevalence of JAK2 V617F Mutation in Iranian Patients with Myeloproliferative Neoplasms. Arch Med Lab Sci. 2020;6:1-7 (e5). Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472-7. https://doi.org/10.1038/leu.2014.3PMid:24402162 Nunes DP, Lima LT, Chauffaille Mde L, Mitne-Neto M, Santos MT, Cliquet MG et al. CALR mutations screening in wild type JAK2(V617F) and MPL(W515K/L) Brazilian myeloproliferative neoplasm patients. Blood Cells Mol Dis. 2015;55(3):236-40. https://doi.org/10.1016/j.bcmd.2015.07.005PMid:26227853 Ojeda MJ, Bragos IM, Calvo KL, Williams GM, Carbonell MM, Pratti AF. CALR, JAK2 and MPL mutation status in Argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms. Hematology. 2018;23(4):208-11. https://doi.org/10.1080/10245332.2017.1385891PMid:28990497 Haslam K, Conneally E, Flynn CM, Cahill MR, Gilligan O, O'Shea D et al. CALR mutation profile in Irish patients with myeloproliferative neoplasms. Hematol Oncol Stem Cell Ther. 2016;9(3):112-5. https://doi.org/10.1016/j.hemonc.2016.05.002PMid:27352261 Dogliotti I, Fava C, Serra A, Gottardi E, Daraio F, Carnuccio F et al. CALR-positive myeloproliferative disorder in a patient with Ph-positive chronic myeloid leukemia in durable treatment-free remission: a case report. Stem Cell Investig. 2017;4:57. https://doi.org/10.21037/sci.2017.06.02PMid:28725653 PMCid:PMC5503914 Lewandowski K, Gniot M. Coexistence of JAK2 or CALR mutation is a rare but clinically important event in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors. Int J Lab Hematol. 2018;40(3):366-71. https://doi.org/10.1111/ijlh.12798PMid:29508552 Haunstrup LM, Ebbesen LH, Hansen M, Severinsen MT, Aggerholm A. Skewed ratio between type 1 and type 2 calreticulin mutations in essential thrombocytosis patients with concomitant Janus kinase 2 V617F mutation. Exp Hematol. 2018;68:62-5. https://doi.org/10.1016/j.exphem.2018.09.007PMid:30292681 Zaen-Al-Abideen Pahore TS, Shamsi MT, Tasneem Farzana SH, Nadeem M, Ahmad M, Naz A. JAK2V617F mutation in chronic myeloid leukemia predicts early disease progression. J Coll Physicians Surg Pak. 2011;21(8):472-5. Tabassum N, Saboor M, Ghani R, Moinuddin M. Frequency of JAK2 V617F mutation in patients with Philadelphia positive Chronic Myeloid Leukemia in Pakistan. Pak J Med Sci. 2014;30(1):185-8.