Emerging Biomarkers of Acute Myocardial Infarction, An Overview of the Newest MicroRNAs

Non-coding RNAs as MI Biomarkers

Authors

  • Venous Shahabi Raberi Seyed-Al-Shohada Cardiology Hospital, Urmia University of Medical Sciences, Urmia, Iran
  • Elnaz Javanshir Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Mohsen Abbasnezhad Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Sina Mashayekhi Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Amirreza Abbasnezhad Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Masumeh Ahmadzadeh Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Akram Shariati Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran

DOI:

https://doi.org/10.31661/gmj.v12i.2909

Keywords:

Myocardial, Biomarker, LcnRNA

Abstract

Globally, acute myocardial infarction (AMI) is the leading cause of death. Early and precise di-agnosis is essential for medical care to enhance prognoses and reduce mortality. The diagnosis of AMI relies primarily on conventional circulating biomarkers. However, these markers have many drawbacks. Non-coding RNAs (ncRNAs) form a significant fraction of the transcriptome and have been shown to be essential for many biological processes, including the pathogenesis of the disease. ncRNAs can be utilized as biomarkers due to their important role in the disease’s development. The current manuscript describes recent progress on the role of ncRNAs as new AMI biomarkers.

References

Vatani KK, Raberi VS, Khalili N, Ajdari S. The Association Between the Serum Level of 25-Hydroxy Vitamin D and the Echocardiographic Indices of Left Ventricular Function in Patients With no Significant Coronary Artery Disease. CJMB. 2020;7(2):220-4. Tabrizi MT, Khezerlu N, Rabori VS, Sarvestani AH. The assessment of functional indices of left ventricular wall layers in cases with normal and high blood pressure by layer-specific strain methods. J Res Clin Med. 2022;10(7):1. https://doi.org/10.34172/jrcm.2022.007 Tabrizi MT, Khezerlouy-Aghdam N, Raberi VS, Khosroshahi AJ. Aortic shelf as a normal variant diagnosed primarily as the aortic dissection: A case report. J Cardiovasc Thorac Res. 2020;12(3):234. https://doi.org/10.34172/jcvtr.2020.41PMid:33123332 PMCid:PMC7581841 Raberi VS, Ezati E, Zadeh RF. The relationship between the hematologic indices (PDW, WBC count, MPV) at the admission time and descending ST segment after thrombolysis in patients with myocardial infarction. Amazonia Investiga. 2019;8(18):139-49. Chaulin AM, Duplyakov DV. Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 1 J Clin Pract. 2020;11(3):75-84. https://doi.org/10.17816/clinpract34284 Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The biomarkers for acute myocardial infarction and heart failure. Biomed Res Int. 2020;2020:1. https://doi.org/10.1155/2020/8827962https://doi.org/10.1155/2020/6653819https://doi.org/10.1155/2020/7197054https://doi.org/10.1155/2020/5717498https://doi.org/10.1155/2020/6639341https://doi.org/10.1155/2020/6081768https://doi.org/10.1155/2020/8894180https://doi.org/10.1155/2020/7451576https://doi.org/10.1155/2020/8894331https://doi.org/10.1155/2020/4854390https://doi.org/10.1155/2020/8216541https://doi.org/10.1155/2020/8829346https://doi.org/10.1155/2020/8887982https://doi.org/10.1155/2020/6665974https://doi.org/10.1155/2020/8723869PMid:33532487 PMCid:PMC7836023 Long B, Long DA, Tannenbaum L, Koyfman A. An emergency medicine approach to troponin elevation due to causes other than occlusion myocardial infarction. AJEM. 2020;38(5):998-1006. https://doi.org/10.1016/j.ajem.2019.12.007PMid:31864875 Rashid S, Malik A, Khurshid R, Faryal U, Qazi S. The diagnostic value of biochemical cardiac markers in acute myocardial infarction. Myocardial Infarction. 2019;23:. https://doi.org/10.5772/intechopen.76150 Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J Integr Bioinform. 2019;16(3):1. https://doi.org/10.1515/jib-2019-0027PMid:31301674 PMCid:PMC6798851 Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin. 2018;39(7):1110-9. https://doi.org/10.1038/aps.2017.205PMid:29698386 PMCid:PMC6289336 Lu TX, Rothenberg ME. MicroRNA. Journal of allergy and clinical immunology. 2018;141(4):1202-7. https://doi.org/10.1016/j.jaci.2017.08.034PMid:29074454 PMCid:PMC5889965 Mathieu E-L, Belhocine M, Dao L, Puthier D, Spicuglia S. Functions of lncRNA in development and diseases. Med Sci: M/S. 2014;30(8-9):790-6. https://doi.org/10.1051/medsci/20143008018PMid:25174757 Saw PE, Song E-W. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020;63(4):485-500. https://doi.org/10.1007/s11427-018-9438-yPMid:31054052 Cai Y, Lei X, Chen Z, Mo Z. The roles of cirRNA in the development of germ cells. Acta Histochem. 2020;122(3):151506. https://doi.org/10.1016/j.acthis.2020.151506PMid:32008790 Wang X-M, Li X-M, Song N, Zhai H, Gao X-M, Yang Y-N. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed Pharmacother. 2019;118:109208. https://doi.org/10.1016/j.biopha.2019.109208PMid:31302423 Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704-16. https://doi.org/10.1093/eurheartj/ehx165PMid:28430919 PMCid:PMC6454570 Zhang L, Ding H, Zhang Y, Wang Y, Zhu W, Li P. Circulating MicroRNAs: biogenesis and clinical significance in acute myocardial infarction. Front Physiol. 2020;11:1088. https://doi.org/10.3389/fphys.2020.01088PMid:33013463 PMCid:PMC7494963 Zhang L, Chen X, Su T, Li H, Huang Q, Wu D et al. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J Thorac Dis. 2015;7(3):303. https://doi.org/10.1016/j.jacc.2015.06.318PMid:25922707 PMCid:PMC4387434 Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein & cell. 2012;3(1):28-37. https://doi.org/10.1007/s13238-012-2003-zPMid:22314808 PMCid:PMC4875218 Olivieri F, Antonicelli R, Lorenzi M, D'Alessandra Y, Lazzarini R, Santini G et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol. 2013;167(2):531-6. https://doi.org/10.1016/j.ijcard.2012.01.075PMid:22330002 Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M et al. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother. 2020;132:110903. https://doi.org/10.1016/j.biopha.2020.110903PMid:33096351 de Gonzalo-Calvo D, Van Der Meer R, Rijzewijk L, Smit J, Revuelta-López E, Nasarre L et al. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep. 2017;7(1):1-14. https://doi.org/10.1038/s41598-017-00070-6PMid:28246388 PMCid:PMC5428350 Pinchi E, Frati P, Aromatario M, Cipolloni L, Fabbri M, La Russa R et al. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med. 2019;23(9):6005-16. https://doi.org/10.1111/jcmm.14463PMid:31240830 PMCid:PMC6714215 Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919-27. https://doi.org/10.1016/j.febslet.2008.05.012PMid:18501714 Yan Y, Zhang B, Liu N, Qi C, Xiao Y, Tian X et al. Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. Biomed Res Int. 2016;2016:1. https://doi.org/10.1155/2016/9471478https://doi.org/10.1155/2016/8079372https://doi.org/10.1155/2016/8367063PMid:27069927 PMCid:PMC4812220 Liu Y, Mao S, Luo X, Wang Y. Circulating miR-1/UCA1 is a novel biomarker for the diagnosis and prognosis of acute myocardial infarction. Int J Cardiol. 2020;310:137. https://doi.org/10.1016/j.ijcard.2020.01.005PMid:32389284 Yang J, Qi M, Fei X, Wang X, Wang K. LncRNA H19: A novel oncogene in multiple cancers. Int J Biol Sci. 2021;17(12):3188. https://doi.org/10.7150/ijbs.62573PMid:34421359 PMCid:PMC8375239 Zhang Z, Gao W, Long Q-Q, Zhang J, Li Y-F, Yan J-J et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci Rep. 2017;7(1):1-9. https://doi.org/10.1038/s41598-017-07611-zPMid:28790415 PMCid:PMC5548926 Gao W, Zhu M, Wang H, Zhao S, Zhao D, Yang Y et al. Association of polymorphisms in long noncoding RNA H19 with coronary artery disease risk in a Chinese population. mutat resfund mol m. 2015;772:15-22. https://doi.org/10.1016/j.mrfmmm.2014.12.009PMid:25772106 Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase-and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:1. https://doi.org/10.1155/2012/960363PMid:22288008 PMCid:PMC3263635 Safaei S, Tahmasebi-Birgani M, Bijanzadeh M, Seyedian SM. Increased expression level of long noncoding RNA H19 in plasma of patients with myocardial infarction. Int J Mol Cell Med. 2020;9(2):122. Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 2016;94:107-21. https://doi.org/10.1016/j.yjmcc.2016.03.015PMid:27056419 Ji Y, Han Z, Shao L, Zhao Y. Evaluation of in vivo antitumor effects of low-frequency ultrasound-mediated miRNA-133a microbubble delivery in breast cancer. Cancer med. 2016;5(9):2534-43. https://doi.org/10.1002/cam4.840PMid:27465833 PMCid:PMC5055178 Chen Y, Zhao Y, Chen W, Xie L, Zhao Z-A, Yang J et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8(1):1-11. https://doi.org/10.1186/s13287-017-0722-zhttps://doi.org/10.1186/s13287-018-1105-9PMid:30606242 PMCid:PMC6318883 Peng L, Chun-guang Q, Bei-fang L, Xue-zhi D, Zi-hao W, Yun-fu L et al. Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagn Pathol. 2014;9(1):1-7. https://doi.org/10.1186/1746-1596-9-89PMid:24885383 PMCid:PMC4082297 Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446-54. https://doi.org/10.1161/CIRCGENETICS.110.958975PMid:21642241 Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5):872-5. https://doi.org/10.1016/j.yjmcc.2011.07.011PMid:21806992 Yuan L, Liu X, Chen F, Zhang L, Chen X, Huang Q et al. Diagnostic and Prognostic Value of Circulating MicroRNA-133a in Patients with Acute Myocardial Infarction. Clin Lab. 2016;62(7):1233-41. https://doi.org/10.7754/Clin.Lab.2015.151023PMid:28164636 Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391(1):73-7. https://doi.org/10.1016/j.bbrc.2009.11.005PMid:19896465 Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115(7):668-77. https://doi.org/10.1161/CIRCRESAHA.115.303836PMid:25035150 Pourrajab F, Velashani FT, Khanaghaei M, Hekmatimoghaddam S, Rahaie M, Zare-Khormizi MR. Comparison of miRNA signature versus conventional biomarkers before and after off-pump coronary artery bypass graft. J Pharm Biomed Anal. 2017;134:11-7. https://doi.org/10.1016/j.jpba.2016.11.014PMid:27866054 Long G, Wang F, Duan Q, Chen F, Yang S, Gong W et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8(6):811-8. https://doi.org/10.7150/ijbs.4439PMid:22719221 PMCid:PMC3372885 Li C, Chen X, Huang J, Sun Q, Wang L. Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction. Eur J Med Res. 2015;20(1):1-8. https://doi.org/10.1016/j.ejmech.2015.03.026https://doi.org/10.1186/s40001-015-0148-yPMid:26044724 PMCid:PMC4459687 Huang S, Chen M, Li L, He Ma, Hu D, Zhang X et al. Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circ Cardiovasc Genet. 2014;7(2):189-98. https://doi.org/10.1161/CIRCGENETICS.113.000294PMid:24627568 Zhang M, Cheng Y-J, Sara JD, Liu L-J, Liu L-P, Zhao X et al. Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chin Med J. 2017;130(01):51-6. https://doi.org/10.4103/0366-6999.196573PMid:28051023 PMCid:PMC5221112 Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J. 2019;95(1122):210-6. https://doi.org/10.1136/postgradmedj-2019-136409PMid:30948439 Chen Z, Li C, Lin K, Zhang Q, Chen Y, Rao L. MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers? Anatol J Cardiol. 2018;19(2):140. https://doi.org/10.14744/AnatolJCardiol.2017.8124PMid:29424735 PMCid:PMC5864810

Downloads

Published

2023-05-30

Issue

Section

Review Article