The Role of Glass Fiber-reinforced Composites in Maxillary Fracture Repair

Glass Fiber-reinforced Composites in Maxillary Fracture Repair

Authors

  • Ashkan Badkoobeh Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
  • Elahe Mozafari Ghadikolaei Faculty of Dentistry, Baku Medical University, Baku, Azerbaijan
  • Seyed Mohammad Mahdi Mirmohammadi Department of Oral and Maxillofacial Surgery, Beheshti Medical University, Tehran, Iran 
  • Seyad Ayub Tabatabaie Mayanie Faculty of Dentistry, Baku Medical University, Baku, Azerbaijan
  • Zahra Bahman Faculty of Dentistry, Belarusian State Medical University, Minsk, Belarus
  • Naghmeh Shenasa Department of Endodontics, Shahrekord University of Medical Sciences, Shahrekord, Iran
  • Sajad Raeisi Estabragh Department of Prosthodontics and Oral and Dental Diseases Research Center, Kerman University of Medical Sciences, Kerman, Iran

DOI:

https://doi.org/10.31661/gmj.v13i.3520

Keywords:

Maxillary Fracture; Glass Fiber Reinforcement; Repair Techniques; Maxillofacial Surgery

Abstract

Maxillary fractures present complex challenges in facial trauma repair due to the intricate anatomy and functional importance of the midface. Traditional fixation methods, such as titanium plates and screws, provide mechanical stability but are associated with complications, including infection, palpability, and interference with imaging. This review examines the role of Glass Fiber-reinforced Composites (GFRC) as an emerging alternative for maxillary fracture repair, emphasizing its mechanical properties, clinical applications, and potential for improving patient outcomes.GFRC offers distinct advantages, including high tensile strength, flexibility, and biocompatibility. These properties enable more effective stress distribution across the fracture site, reducing localized pressure and enhancing bone healing. GFRC’s radiolucency and lightweight nature also address aesthetic concerns, as it eliminates the visibility and palpability issues commonly associated with metallic implants. This review compares GFRC to traditional materials such as titanium and composite resorbable polymers, highlighting its superior performance in terms of mechanical stability, patient comfort, and long-term durability. The review also explores emerging technologies in GFRC, such as bioactive coatings and nanotechnology, which have the potential to enhance its biological integration and promote faster bone regeneration.

References

Adesina O, Wemambu J, Opaleye T, Salami A. Maxillofacial Fractures: A Three-Year Survey. J Curr Surg. 2019;9(4):51-6.

https://doi.org/10.14740/jcs387

Luo M, Yang X, Wang Q, Li C, Yin Y, Han X. Skeletal stability following bioresorbable versus titanium fixation in orthognathic surgery: a systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery. 2018 Feb;47(2):141-51.

https://doi.org/10.1016/j.ijom.2017.09.013

Firat C, Elmas O, Aytekin A. Surgical Modalities in Maxillo-Facial Fractures: Retrospective Analysis of 110 Patients. Eur J Gen Med. 2012;9:258-64.

https://doi.org/10.29333/ejgm/82441

Obimakinde O, Ogundipe K, Ijarogbe AO. Pattern and aetiology of maxillofacial injuries in Ado-Ekiti, Nigeria. Inj Prev. 2010;16:A164.

https://doi.org/10.1136/ip.2010.029215.586

Naini FB. Historical evolution of orthognathic surgery. Orthognathic surgery: principles, planning and practice. 2016 Dec 16:23-82.

https://doi.org/10.1002/9781119004370.ch2

Béogo R, Dakouré PW, Coulibaly T, Donkor P. Epidemiology of facial fractures: an analysis of 349 patients. Med Buccale Chir Buccale. 2014;20:13-6.

https://doi.org/10.1051/mbcb/2013099

Bonavolontà P, Dell'Aversana Orabona G, Abbate V, Vaira L, Lo Faro C, Petrocelli M, et al. The epidemiological analysis of maxillofacial fractures in Italy: The experience of a single tertiary center with 1720 patients. J Craniomaxillofac Surg. 2017;45(8):1319-26.

https://doi.org/10.1016/j.jcms.2017.05.011

Blumer M, Kumalic S, Gander T, Lanzer M, Rostetter C, Rücker M, et al. Retrospective analysis of 471 surgically treated zygomaticomaxillary complex fractures. J Craniomaxillofac Surg. 2017;46(2):269-73.

https://doi.org/10.1016/j.jcms.2017.11.010

R S, K S, Jude NJ. Evolution of The Efficiency of Various Methods of Fixation for Zygomatico Maxillary Complex Fractures. Journal of Scientific Dentistry. 2018 Dec;8(2):20-4.

https://doi.org/10.5005/jsd-8-2-20

Wu W, Zhou J, Xu CT, Zhang J, Jin YJ, Sun GL. Biomechanical evaluation of maxillary Lefort Ι fracture with bioabsorbable osteosynthesis internal fixation. Dent Traumatol. 2014 Dec;30(6):447-54.

https://doi.org/10.1111/edt.12120

Escobedo Martínez MF, Rodríguez López S, Valdés Fontela J, Olay García S, Mauvezín Quevedo M. A New Technique for Direct Fabrication of Fiber-Reinforced Composite Bridge: A Long-Term Clinical Observation. Dentistry Journal. 2020 May 10;8(2):48.

https://doi.org/10.3390/dj8020048

Viţalariu AM, Antohe M, Bahrim D, Tatarciuc M. A maxillary premolar reconstruction with a glass fiber reinforced post. Rev Med Chir Soc Med Nat Iasi. 2006;110(4):982-6.

Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. The Journal of Prosthetic Dentistry. 2004 Mar;91(3):274-80.

https://doi.org/10.1016/j.prosdent.2003.12.023

Beltagy TalatM. Invisible reinforcement of uncomplicated coronal fracture using two different fiber-reinforced composites: in-vitro and in-vivo study. Tanta Dent J. 2019;16(4):201.

https://doi.org/10.4103/tdj.tdj_27_19

Ballo AM, Akca EA, Ozen T, Lassila L, Vallittu PK, Närhi TO. Bone tissue responses to glass fiber‐reinforced composite implants - a histomorphometric study. Clinical Oral Implants Res. 2009 Jun;20(6):608-15.

https://doi.org/10.1111/j.1600-0501.2008.01700.x

Jayaraju R, Sagayaraj A, Reddy M, Harshitha K, Majety P, Ivatury R. Patterns of Maxillofacial Fractures in Road Traffic Crashes in an Indian Rural Tertiary Center. Panam J Trauma Crit Care Emerg Surg. 2014;3:53-8.

https://doi.org/10.5005/jp-journals-10030-1088

Jaber M, Alqahtani F, Bishawi K, Kuriadom ST. Patterns of maxillofacial injuries in the Middle East and North Africa: A systematic review. Int Dent J. 2020;71:292-9.

https://doi.org/10.1111/idj.12587

Grunert R, Wagner M, Rotsch C, Essig H, Posern S, Pabst F, et al. Concept of patient-specific shape memory implants for the treatment of orbital floor fractures. Oral Maxillofac Surg. 2017 Jun;21(2):179-85.

https://doi.org/10.1007/s10006-017-0615-4

Shah SA, Bangash ZQ, Khan T, Yunas M, Raza M, Shah SF. The Pattern of Maxillofacial Trauma & its Management. Journal of Dental and Oral Disorders and Therapy. 2016;4(1):01-6.

https://doi.org/10.15226/jdodt.2016.00165

Ikeda AK, Burke AB. LeFort Fractures. Semin Plast Surg. 2021 Nov;35(04):250-5.

https://doi.org/10.1055/s-0041-1735816

Hernández-Alfaro F, Ragucci GMM, Méndez-Manjón I, Giralt-Hernando M, Guijarro-Martínez R, Sicilia-Blanco P, et al. Rehabilitation of the severely atrophic maxilla using LeFort I maxillary advancement and simultaneous zygoma implant placement: Proof of concept. Int J Oral Implantol (Berl). 2019;12(3):359-72.

Segura-Pallerès I, Sobrero F, Roccia F, Gorla LF de O, Pereira-Filho V, Gallafassi D, et al. Characteristics and age‐related injury patterns of maxillofacial fractures in children and adolescents: A multicentric and prospective study. Dental Traumatology. 2022;38:213-22.

https://doi.org/10.1111/edt.12735

Runci M, De Ponte FS, Falzea R, Bramanti E, Lauritano F, Cervino G, et al. Facial and Orbital Fractures: A Fifteen Years Retrospective Evaluation of North East Sicily Treated Patients. Open Dent J. 2017 Oct 31;11:546-56.

https://doi.org/10.2174/1874210601711010546

Rendenbach C, Steffen C, Sellenschloh K, Heyland M, Morlock MM, Toivonen J, et al. Patient specific glass fiber reinforced composite versus titanium plate: A comparative biomechanical analysis under cyclic dynamic loading. J Mech Behav Biomed Mater. 2019 Mar;91:212-9.

https://doi.org/10.1016/j.jmbbm.2018.12.014

Ahmad W, Ganguly A, Hashmi GS, Ansari MK, Rahman T, Arman M. Fixation in Maxillofacial Surgery-Past, Present and Future: A Narrative Review Article. FACE. 2024 Mar;5(1):126-32.

https://doi.org/10.1177/27325016231221424

Canas M, Fonseca R, Diaz L, Filippis AD, Afzal H, Aldana JA, et al. Open Mandible and Maxillary Fractures Associated with Higher Risk of Infection in Victims of Assault. Surgical Infections. 2023; 2022: 295.

https://doi.org/10.1089/sur.2022.295

Forrester JD, Wolff CJ, Choi J, Colling KP, Huston JM. Surgical Infection Society Guidelines for Antibiotic Use in Patients with Traumatic Facial Fractures. Surgical Infections. 2021 Apr;22(3):274-82.

https://doi.org/10.1089/sur.2020.107

Regmi KP, Tu J, Ge S, Hou C, Hu X, Li S, et al. Retrospective Clinical Study of Maxillary Sagittal Fractures: Predictors of Postoperative Outcome. Journal of Oral and Maxillofacial Surgery. 2017 Mar;75(3):576-83.

https://doi.org/10.1016/j.joms.2016.11.012

Puspita S. Aesthetic Treatment In Patient With Fractures Of Maxillary Central Incisor Teeth. DENTA. 2019 Apr 29;11(2):89.

https://doi.org/10.30649/denta.v11i2.102

Mahmoud SM, Liao HT, Chen CT. Aesthetic and Functional Outcome of Zygomatic Fractures Fixation Comparison With Resorbable Versus Titanium Plates. Annals of Plastic Surgery. 2016 Mar;76:S85.

https://doi.org/10.1097/SAP.0000000000000700

Wang T, Matinlinna JP, Burrow MF, Ahmed KE. The biocompatibility of glass-fibre reinforced composites (GFRCs) - a systematic review. J Prosthodont Res. 2021;65(3):273-83.

https://doi.org/10.2186/jpr.JPR_D20_00031

Chan YH, Lew WZ, Lu E, Loretz T, Lu L, Lin CT, et al. An evaluation of the biocompatibility and osseointegration of novel glass fiber reinforced composite implants: In vitro and in vivo studies. Dental Materials. 2018 Mar;34(3):470-85.

https://doi.org/10.1016/j.dental.2017.12.001

Im SM, Huh YH, Cho LR, Park CJ. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading. J Adv Prosthodont. 2017;9(1):22.

https://doi.org/10.4047/jap.2017.9.1.22

Goguţă LM, Bratu D, Jivănescu A, Erimescu R, Mărcăuţeanu C. Glass fibre reinforced acrylic resin complete dentures: a 5‐year clinical study. Gerodontology. 2012 Mar;29(1):64-9.

https://doi.org/10.1111/j.1741-2358.2010.00385.x

Kuzmin KL, Gutnikov SI, Zhukovskaya ES, Lazoryak BI. Basaltic glass fibers with advanced mechanical properties. Journal of Non-Crystalline Solids. 2017 Nov;476:144-50.

https://doi.org/10.1016/j.jnoncrysol.2017.09.042

Pirhonen E, Moimas L, Brink M. Mechanical properties of bioactive glass 9-93 fibres. Acta Biomaterialia. 2006 Jan;2(1):103-7.

https://doi.org/10.1016/j.actbio.2005.08.008

Kara M, Kirici M, Cagan SC. Effects of the Number of Fatigue Cycles on the Hoop Tensile Strength of Glass Fiber/Epoxy Composite Pipes. J Fail Anal and Preven. 2019 Aug;19(4):1181-6.

https://doi.org/10.1007/s11668-019-00720-z

Signore A, Benedicenti S, Kaitsas V, Barone M, Angiero F, Ravera G. Long-term survival of endodontically treated, maxillary anterior teeth restored with either tapered or parallel-sided glass-fiber posts and full-ceramic crown coverage. J Dent. 2009 Feb;37(2):115-21.

https://doi.org/10.1016/j.jdent.2008.10.007

Ma Z, Dong G, Lv C, Qiu J. Core-shell glass fibers with high bioactivity and good flexibility. Materials Letters. 2012 Dec;88:136-9.

https://doi.org/10.1016/j.matlet.2012.08.045

Ahmed I, Collins C, Lewis M, Olsen I, Knowles J. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials. 2004;25 16:3223-32.

https://doi.org/10.1016/j.biomaterials.2003.10.013

Hussain I, Ali B, Akhtar T, Jameel MS, Raza SS. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Studies in Construction Materials. 2020;13:e00429.

https://doi.org/10.1016/j.cscm.2020.e00429

Karataş MA, Gökkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology. 2018; 14(4):318-26.

https://doi.org/10.1016/j.dt.2018.02.001

Pantaloni D, Rudolph A, Shah D, Baley C, Bourmaud A. Interfacial and mechanical characterisation of biodegradable polymer-flax fibre composites. Composites Science and Technology. 2021;201:108529.

https://doi.org/10.1016/j.compscitech.2020.108529

Ranjkesh B, Haddadi Y, Krogsgaard C, Schurmann A, Bahrami G. Fracture resistance of endodontically treated maxillary incisors restored with single or bundled glass fiber-reinforced composite resin posts. J Clin Exp Dent. 2022;14(4): e329-33.

https://doi.org/10.4317/jced.59373

Ali B, Qureshi LA, Khan SU. Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Construction and Building Materials. 2020;262:120820.

https://doi.org/10.1016/j.conbuildmat.2020.120820

Ambica K, Mahendran K, Talwar S, Verma M, Padmini G, Periasamy R. Comparative Evaluation of Fracture Resistance under Static and Fatigue Loading of Endodontically Treated Teeth Restored with Carbon Fiber Posts, Glass Fiber Posts, and an Experimental Dentin Post System: An In Vitro Study. Journal of Endodontics. 2013 Jan;39(1):96-100.

https://doi.org/10.1016/j.joen.2012.07.003

Hariprasad A, Kalavathy MH, MohammedHilal S. Effect of glass fiber and silane treated glass fiber reinforcement on impact strength of maxillary complete denture. annals and essences of dentistry. 2011; 3: 7-12.

https://doi.org/10.5368/aedj.2011.3.4.1.2

Khidr HK, El Sheikh SA, Melek LN. Evaluation of the efficacy of fiber glass splinting for fixation of dento-alveolar fractures in children. Alexandria Dental Journal. 2017 Apr 1;42(1):119-26.

https://doi.org/10.21608/adjalexu.2017.57874

Tanaka CB, Ershad F, Ellakwa A, Kruzic JJ. Fiber reinforcement of a resin modified glass ionomer cement. Dental Materials. 2020 Dec 1;36(12):1516-23.

https://doi.org/10.1016/j.dental.2020.09.003

Diaconu A, Holte MB, Berg-Beckhoff G, Pinholt EM. Three-Dimensional Accuracy and Stability of Personalized Implants in Orthognathic Surgery: A Systematic Review and a Meta-Analysis. JPM. 2023 Jan 7;13(1):125.

https://doi.org/10.3390/jpm13010125

Pang J, Feng C, Zhu X, Liu B, Deng T, Gao Y, et al. Fracture behaviors of maxillary central incisors with flared root canals restored with CAD/CAM integrated glass fiber post-and-core. Dental materials journal. 2019;38 1:114-9.

https://doi.org/10.4012/dmj.2017-394

Fidan M, Yağci Ö. Effect of aging and fiber‐reinforcement on color stability, translucency, and microhardness of single‐shade resin composites versus multi‐shade resin composite. J Esthet Restor Dent. 2024 Apr;36(4):632-42.

https://doi.org/10.1111/jerd.13125

Kuusisto N, Huumonen S, Kotiaho A, Haapea M, Rekola J, Vallittu P. Intensity of artefacts in cone beam CT examinations caused by titanium and glass fibre-reinforced composite implants. Dentomaxillofacial Radiology. 2019 Feb;48(2):20170471.

https://doi.org/10.1259/dmfr.20170471

Longeac M, Depeyre A, Pereira B, Barthelemy I, Pham Dang N. Virtual surgical planning and three-dimensional printing for the treatment of comminuted zygomaticomaxillary complex fracture. Journal of Stomatology, Oral and Maxillofacial Surgery. 2021 Sep;122(4):386-90.

https://doi.org/10.1016/j.jormas.2020.05.009

Schneider M, Besmens I, Luo Y, Giovanoli P, Lindenblatt N. Surgical management of isolated orbital floor and zygomaticomaxillary complex fractures with focus on surgical approaches and complications. Journal of Plastic Surgery and Hand Surgery. 2020;54:200-6.

https://doi.org/10.1080/2000656X.2020.1746664

Narva KK, Lassila LVJ, Vallittu PK. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite. The Journal of Prosthetic Dentistry. 2004 Feb;91(2):158-63.

https://doi.org/10.1016/j.prosdent.2003.10.024

Wagner F, Seemann R, Marincola M, Ewers R. Fiber-Reinforced Resin Fixed Prostheses on 4 Short Implants in Severely Atrophic Maxillas: 1-Year Results of a Prospective Cohort Study. Journal of Oral and Maxillofacial Surgery. 2018 Jun;76(6):1194-9.

https://doi.org/10.1016/j.joms.2018.02.001

Scotti N, Forniglia A, Michelotto Tempesta R, Comba A, Saratti CM, Pasqualini D, et al. Effects of fiber-glass-reinforced composite restorations on fracture resistance and failure mode of endodontically treated molars. Journal of Dentistry. 2016 Oct;53:82-7.

https://doi.org/10.1016/j.jdent.2016.08.001

Călburean F, Gălbinașu B, Cara-Ilici R, Pătrașcu I. Fracture Resistance in Fiber Reinforced Composite Restorations - An in Vitro Study. JMED. 2014 Jun 25; :1-11.

https://doi.org/10.5171/2014.669406

Praveen Kumar P, Srilatha K, Nandlal B. Fracture resistance of class IV fiber-reinforced composite resin restorations: An in vitro study. Indian J Dent Sci. 2017;9(4):241.

https://doi.org/10.4103/IJDS.IJDS_96_17

Bijelic-Donova J, Myyryläinen T, Karsila V, Vallittu PK, Tanner J. Direct Short-Fiber Reinforced Composite Resin Restorations and Glass-Ceramic Endocrowns in Endodontically Treated Molars: A 4 -Year Clinical Study. Eur J Prosthodont Restor Dent. 2022 Nov 1;30(4):284-95.

Fennis WMM, Kreulen CM, Tezvergil A, Lassila LVJ, Vallittu PK, Creugers NHJ. In Vitro Repair of Fractured Fiber-Reinforced Cusp-Replacing Composite Restorations. International Journal of Dentistry. 2011;2011:1-6.

https://doi.org/10.1155/2011/165938

Pecciarini M, Biagioni A, Ferrari M, Discepoli N. Role of occlusion on fiber post restored teeth rehabilitation: a systematic review. Journal of Osseointegration. 2020 Feb 26;12(1):23805.

Kiomarsi N, Saburian P, Chiniforush N, Karazifard M, Hashemikamangar S. Effect of thermocycling and surface treatment on repair bond strength of composite. Journal of Clinical and Experimental Dentistry. 2017;9:e945-51.

https://doi.org/10.4317/jced.53721

Jing M, Raongjant W, Kerdmongkon R. Compressive Strengthening of Damaged Historic Masonry Walls Repaired with GFRP. Advanced Materials Research. 2010;133-134:965-70.

https://doi.org/10.4028/www.scientific.net/AMR.133-134.965

Haddad R, AL-Mekhlafy N, Ashteyat A. Repair of heat-damaged reinforced concrete slabs using fibrous composite materials. Construction and Building Materials. 2011;25:1213-21.

https://doi.org/10.1016/j.conbuildmat.2010.09.033

Nguyen P, Khechoyan D, Phillips J, Forrest C. Custom CAD/CAM implants for complex craniofacial reconstruction in children: Our experience based on 136 cases. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2018;71 11:1609-17.

https://doi.org/10.1016/j.bjps.2018.07.016

Peel S, Eggbeer D. Additively manufactured maxillofacial implants and guides - achieving routine use. Rapid Prototyping Journal. 2016;22:189-99.

https://doi.org/10.1108/RPJ-01-2014-0004

Gao SL, Mäder E, Plonka R. Nanostructured coatings of glass fibers: Improvement of alkali resistance and mechanical properties. Acta Materialia. 2007 Feb;55(3):1043-52.

https://doi.org/10.1016/j.actamat.2006.09.020

Raju P, Raja K, Lingadurai K, Maridurai T, Prasanna S. Glass/Caryota urens hybridized fibre-reinforced nanoclay/SiC toughened epoxy hybrid composite: mechanical, drop load impact, hydrophobicity and fatigue behaviour. Biomass Conversion and Biorefinery. 2021;13:1143-52.

https://doi.org/10.1007/s13399-021-01427-8

Withers G, Yu Y, Khabashesku V, Cercone L, Hadjiev V, Souza JM, et al. Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organomodified nanoclays. Composites Part B-engineering. 2015;72:175-82.

https://doi.org/10.1016/j.compositesb.2014.12.008

Kim H, Song J, Kim HE. Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix. Journal of biomedical materials research Part A. 2006;79 3:698-705.

https://doi.org/10.1002/jbm.a.30848

Gao W, Sun L, Zhang Z, Li Z. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. Journal of Biomaterials Science, Polymer Edition. 2020;31:984-98.

https://doi.org/10.1080/09205063.2020.1735607

Gu Y, Huang W hai, Rahaman M, Day D. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta biomaterialia. 2013;9 11:9126-36.

https://doi.org/10.1016/j.actbio.2013.06.039

Kolan K, Leu M, Hilmas G, Brown RFR, Velez M. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication. 2011;3:025004.

https://doi.org/10.1088/1758-5082/3/2/025004

Fu Q, Rahaman M, Bal B, Bonewald L, Kuroki K, Brown RFR. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications II In vitro and in vivo biological evaluation. Journal of biomedical materials research Part A. 2010; 95(1):172-9.

https://doi.org/10.1002/jbm.a.32823

Tölli H, Kujala S, Levonen K, Jämsä T, Jalovaara P. Bioglass as a carrier for reindeer bone protein extract in the healing of rat femur defect. Journal of Materials Science: Materials in Medicine. 2010;21:1677-84.

https://doi.org/10.1007/s10856-010-4017-5

Chen S, Yang Q, Brow R, Liu K, Brow KA, Ma Y, et al. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions. Materials science & engineering C, Materials for biological applications. 2017;73:447-55.

https://doi.org/10.1016/j.msec.2016.12.099

Scotti N, Michelotto Tempesta R, Pasqualini D, Baldi A, Vergano EA, Baldissara P, Alovisi M, Comba A. 3D interfacial gap and fracture resistance of endodontically treated premolars restored with fiber-reinforced composites. Journal of Adhesive Dentistry. 2020;22(2):215-24.

Downloads

Published

2024-09-25

Issue

Section

Review Article