Different Intensities of Exercise and Cardiovascular Performance: A Review
DOI:
https://doi.org/10.31661/gmj.v14i.3722Keywords:
Cardiovascular Diseases; Cardiomyocytes; Atherosclerosis; Aerobic Exercise; Resistance Training; High Intensity Interval Training [HIIT]; Moderate Intensity Continuous Training [MICT]Abstract
Cardiovascular diseases [CVDs] remain a major global health concern, with arterial stiffness and atherosclerosis contributing significantly to their prevalence, especially with aging. Regular physical activity is crucial for prevention, improving endothelial function and lipid profiles. This paper examines the effects of different exercise modalities including aerobic training, Moderate-Intensity Continuous Training [MICT], High Intensity Interval Training [HIIT], resistance training [RT] and on cardiovascular health. Aerobic exercise consistently benefits blood pressure, lipid metabolism, and mitochondrial density. HIIT, in particular, often surpasses MICT in enhancing peak oxygen uptake [VO2 peak] and endothelial function. Resistance training improves muscle strength, blood pressure, and insulin sensitivity. However, its impact on arterial stiffness is debated with low to moderate intensity RT appears beneficial, while high intensity RT shows mixed or potentially detrimental effects. Inconsistencies across studies are largely attributed to variations in protocols, intensities, and participant characteristics. Ultimately, exercise is a vital CVD management strategy, underscoring the need for personalized prescriptions based on specific exercise types and intensities to optimize cardiovascular benefits.
References
Cardiovascular diseases. [CVDs]. [Internet]: [cited 2025 May 25]; Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-[cvds]
Zhou M, Dong J, Zha L, Liao Y. Causal Association between Periodontal Diseases and Cardiovascular Diseases. Genes. 2021 Dec 22;13[1]:13.
https://doi.org/10.3390/genes13010013
PMid:35052354 PMCid:PMC8775300
Sanz M, Marco del Castillo A, Jepsen S, Gonzalez-Juanatey JR, D'Aiuto F, Bouchard P, et al. Periodontitis and cardiovascular diseases: Consensus report. J Clin Periodontol. 2020 Mar;47[3]:268-88.
https://doi.org/10.1111/jcpe.13189
PMid:32011025 PMCid:PMC7027895
Ageing and health. [Internet]. [cited 2025: May 25]; Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
Growing at a slower pace. world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100 | UN DESA | United Nations Department of Economic and Social Affairs [Internet]. [cited: 2025 May 25]; Available from: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
Dai X, Hummel SL, Salazar JB, Taffet GE, Zieman S, Schwartz JB. Cardiovascular physiology in the older adults. J Geriatr Cardiol JGC. 2015 May;12[3]:196-201.
Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8[5]:e721-9.
https://doi.org/10.1016/S2214-109X(20)30117-0
PMid:32353319
Shao JS, Cai J, Towler DA. Molecular Mechanisms of Vascular Calcification: Lessons Learned From The Aorta. Arterioscler Thromb Vasc Biol. 2006 Jul;26[7]:1423-30.
https://doi.org/10.1161/01.ATV.0000220441.42041.20
PMid:16601233
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, et al. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022 Mar 20;23[6]:3346.
https://doi.org/10.3390/ijms23063346
PMid:35328769 PMCid:PMC8954705
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023 Oct 20;14[10]:691.
https://doi.org/10.1038/s41419-023-06206-z
PMid:37863894 PMCid:PMC10589261
Moore KJ, Tabas I. Macrophages in the Pathogenesis of Atherosclerosis. Cell. 2011 Apr 29;145[3]:341-55.
https://doi.org/10.1016/j.cell.2011.04.005
PMid:21529710 PMCid:PMC3111065
Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta BBA - Mol Basis Dis. 2019 Apr;1865[4]:728-34.
https://doi.org/10.1016/j.bbadis.2018.08.019
PMid:30837069
Tao X, Chen Y, Zhen K, Ren S, Lv Y, Yu L. Effect of continuous aerobic exercise on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Front Physiol. 2023 Feb 10;14:1043108.
https://doi.org/10.3389/fphys.2023.1043108
PMid:36846339 PMCid:PMC9950521
Pedralli ML, Eibel B, Waclawovsky G, Schaun MI, Nisa-Castro-Neto W, Umpierre D, et al. Effects of exercise training on endothelial function in individuals with hypertension: a systematic review with meta-analysis. J Am Soc Hypertens. 2018 Dec;12[12]:e65-75.
https://doi.org/10.1016/j.jash.2018.09.009
PMid:30482668
Pahlavani HA. Exercise-induced signaling pathways to counteracting cardiac apoptotic processes. Front Cell Dev Biol. 2022 Aug 11;10:950927.
https://doi.org/10.3389/fcell.2022.950927
PMid:36036015 PMCid:PMC9403089
Bellafiore M, Battaglia G, Bianco A, Palma A. Expression Pattern of Angiogenic Factors in Healthy Heart in Response to Physical Exercise Intensity. Front Physiol. 2019 Mar 28;10:238.
https://doi.org/10.3389/fphys.2019.00238
PMid:30984008 PMCid:PMC6447665
panjehpour M, Zadhoush F. Physiological role of adenosine and its receptors in tissue hypoxia-induced. Physiol-Pharmacol. 2012 Oct 1;16[3]:209 EP - 221.
Braile M, Marcella S, Cristinziano L, Galdiero MR, Modestino L, Ferrara AL, et al. VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci. 2020 Jul 26;21[15]:5294.
https://doi.org/10.3390/ijms21155294
PMid:32722551 PMCid:PMC7432634
Mammoto A, Matus K, Mammoto T. Extracellular Matrix in Aging Aorta. Front Cell Dev Biol. 2022 Feb 21;10:822561.
https://doi.org/10.3389/fcell.2022.822561
PMid:35265616 PMCid:PMC8898904
Thijssen DHJ, Carter SE, Green DJ. Arterial structure and function in vascular ageing: are you as old as your arteries? J Physiol. 2016 Apr 15;594[8]:2275-84.
https://doi.org/10.1113/JP270597
PMid:26140618 PMCid:PMC4933112
Avolio A. Arterial Stiffness. Pulse. 2013;1[1]:14-28.
https://doi.org/10.1159/000348620
PMid:26587425 PMCid:PMC4315342
Mozos I, Malainer C, Horbańczuk J, Gug C, Stoian D, Luca CT, et al. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Front Immunol. 2017 Aug 31;8:1058.
https://doi.org/10.3389/fimmu.2017.01058
PMid:28912780 PMCid:PMC5583158
Tan JL, Thakur K. Systolic Hypertension. In: StatPearls [Internet] Treasure Island [FL] StatPearls Publishing 2025 [cited 2025 Jun 6]; Available from: http://www.ncbi.nlm.nih.gov/books/NBK482472/
Polak JF, Pencina MJ, Pencina KM, O'Donnell CJ, Wolf PA, D'Agostino RB. Carotid-Wall Intima-Media Thickness and Cardiovascular Events. N Engl J Med. 2011 Jul 21;365[3]:213-21.
https://doi.org/10.1056/NEJMoa1012592
PMid:21774709 PMCid:PMC3153949
Fakhrzadeh H, Sharifi F. Cardiovascular diseases in the elderly. J-Gorgan-Univ-Med-Sci. 2012 Oct 1;14[3]:1 EP - 9.
Ghardashi-Afousi A, Davoodi M, Hesamabadi BK, Asvadi-Fard M, Bigi MAB, Izadi MR, et al. Improved carotid intima-media thickness-induced high-intensity interval training associated with decreased serum levels of Dkk-1 and sclerostin in type 2 diabetes. J Diabetes Complications. 2020 Jan 1;34[1]:107469.
https://doi.org/10.1016/j.jdiacomp.2019.107469
PMid:31706805
Gielen S, Schuler G, Adams V. Cardiovascular Effects of Exercise Training: Molecular Mechanisms. Circulation. 2010 Sep 21;122[12]:1221-38.
https://doi.org/10.1161/CIRCULATIONAHA.110.939959
PMid:20855669
Goldstein JL, Brown MS. A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins. Cell. 2015 Mar;161[1]:161-72.
https://doi.org/10.1016/j.cell.2015.01.036
PMid:25815993 PMCid:PMC4525717
Hao W, Friedman A. The LDL-HDL Profile Determines the Risk of Atherosclerosis: A Mathematical Model. PLOS ONE. 2014 Mar 12;9[3]:e90497.
https://doi.org/10.1371/journal.pone.0090497
PMid:24621857 PMCid:PMC3951264
Cervellati C, Marsillach J. Impact of Antioxidant and Anti-Inflammatory Functions of HDL in Diseases-2nd Edition. Antioxidants. 2025 Mar;14[3]:358.
https://doi.org/10.3390/antiox14030358
PMid:40227416 PMCid:PMC11939637
Ouimet M, Barrett TJ, Fisher EA. HDL and Reverse Cholesterol Transport. Circ Res. 2019 May 10;124[10]:1505-18.
https://doi.org/10.1161/CIRCRESAHA.119.312617
PMid:31071007 PMCid:PMC6813799
Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies Circulation. 1989 Jan; 79[1]: 8-15.
https://doi.org/10.1161/01.CIR.79.1.8
PMid:2642759
Hokanson JE, Austin MA Dr. Plasma Triglyceride Level is a Risk Factor for Cardiovascular Disease Independent of High-Density Lipoprotein Cholesterol Level: A Metaanalysis of Population-Based Prospective Studies. J Cardiovasc Risk. 1996 Apr 1;3[2]:213-9.
https://doi.org/10.1097/00043798-199604000-00014
PMid:8836866
Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol. 2000 Nov 1;86[9]:943-9.
https://doi.org/10.1016/S0002-9149(00)01127-9
PMid:11053704
Ross R, Blair SN, Arena R, Church TS, Després JP, Franklin BA, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016 Dec 13;134[24]:e653-99.
https://doi.org/10.1161/CIR.0000000000000461
PMid:27881567
Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The Physical Activity Guidelines for Americans. JAMA. 2018 Nov 20;320[19]:2020-8.
https://doi.org/10.1001/jama.2018.14854
PMid:30418471 PMCid:PMC9582631
Dibben GO, Faulkner J, Oldridge N, Rees K, Thompson DR, Zwisler AD, et al. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J. 2023 Feb 7;44[6]:452-69.
https://doi.org/10.1093/eurheartj/ehac747
PMid:36746187 PMCid:PMC9902155
Rouleau CR, Chirico D, Wilton SB, MacDonald MK, Tao T, Arena R, et al. Mortality Benefits of Cardiac Rehabilitation in Coronary Artery Disease Are Mediated by Comprehensive Risk Factor Modification: A Retrospective Cohort Study. J Am Heart Assoc. 2024 May 21;13[10]:e033568.
https://doi.org/10.1161/JAHA.123.033568
PMid:38761079 PMCid:PMC11179828
Fujie S, Sato K, Miyamoto-Mikami E, Hasegawa N, Fujita S, Sanada K, et al. Reduction of Arterial Stiffness by Exercise Training Is Associated with Increasing Plasma Apelin Level in Middle-Aged and Older Adults. PLoS ONE. 2014 Apr 1;9[4]:e93545.
https://doi.org/10.1371/journal.pone.0093545
PMid:24691252 PMCid:PMC3972107
Keijzer' 'Adine R. de Kauling' 'Robert M. Jorstad' 'Harald Roos-Hesselink' 'Jolien W: Physical activity for cardiovascular prevention [Internet] [cited 2025 Jun 7]; Available from: https://www.escardio.org/Councils/Council-for-Cardiology-Practice-[CCP]/Cardiopractice/physical-activity-for-cardiovascular-prevention, https://www.escardio.org/Councils/Council-for-Cardiology-Practice-[CCP]/Cardiopractice/physical-activity-for-cardiovascular-prevention
Zhou H, Wang S, Zhao C, He H. Effect of exercise on vascular function in hypertension patients: A meta-analysis of randomized controlled trials. Front Cardiovasc Med. 2022 Dec 21;9:1013490.
https://doi.org/10.3389/fcvm.2022.1013490
PMid:36620631 PMCid:PMC9812646
Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes. From Pathophysiology to Lifestyle Modifications [Internet]. [cited: 2025 Jun 7]; Available from: https://www.mdpi.com/2076-3921/14/1/72
https://doi.org/10.3390/antiox14010072
PMid:39857406 PMCid:PMC11759781
Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, et al. Physical Exercise and Its Protective Effects on Diabetic Cardiomyopathy: What Is the Evidence? Front Endocrinol. 2018 Dec 3;9:729.
https://doi.org/10.3389/fendo.2018.00729
PMid:30559720 PMCid:PMC6286969
Zaidi H, Byrkjeland R, Njerve IU, Åkra S, Solheim S, Arnesen H, et al. Adiponectin in relation to exercise and physical performance in patients with type 2 diabetes and coronary artery disease. Adipocyte. 10[1]:612-20.
https://doi.org/10.1080/21623945.2021.1996699
PMid:34779349 PMCid:PMC8726619
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013 Jun 6;153[6]:1194-217.
https://doi.org/10.1016/j.cell.2013.05.039
PMid:23746838 PMCid:PMC3836174
Horn MA, Trafford AW. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016 Apr;93:175-85.
https://doi.org/10.1016/j.yjmcc.2015.11.005
PMid:26578393 PMCid:PMC4945757
MSD Manual Consumer Version [Internet]. [cited. 2025 Jun 7]: Effects of Aging on the Heart and Blood Vessels - Heart and Blood Vessel Disorders; Available from: https://www.msdmanuals.com/home/heart-and-blood-vessel-disorders/biology-of-the-heart-and-blood-vessels/effects-of-aging-on-the-heart-and-blood-vessels
Agrawal T, Nagueh SF. Changes in cardiac structure and function with aging. J Cardiovasc Aging. 2022 Jan 12;2[1]:N/A-N/A.
https://doi.org/10.20517/jca.2021.40
Upadhya B, Taffet GE, Cheng CP, Kitzman DW. Heart Failure with Preserved Ejection Fraction in the Elderly: Scope of the Problem. J Mol Cell Cardiol. 2015 Jun;83:73-87.
https://doi.org/10.1016/j.yjmcc.2015.02.025
PMid:25754674 PMCid:PMC5300019
Annabelle Santos Volgman MD, Gatha Nair MD, Radmila Lyubarova MD, Faisal Merchant MD, Mason P, Anne B, Curtis MD, et al. Management of Atrial Fibrillation in Patients 75 Years and Older: JACC State-of-the-Art Review. J Am Coll Cardiol [Internet]: 2022 Jan 18 [cited 2025 Jun 7]; Available from: https://www.jacc.org/doi/10.1016/j.jacc.2021.10.037
Zathar Z, Karunatilleke A, Fawzy AM, Lip GYH. Atrial Fibrillation in Older People Concepts and Controversies. Front Med [Internet]: 2019 Aug 8 [cited 2025 Jun 7]; Available from: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2019.00175/full
https://doi.org/10.3389/fmed.2019.00175
PMid:31440508 PMCid:PMC6694766
Okwuosa TM, Soliman EZ, Lopez F, Williams KA, Alonso A, Ferdinand KC. Left Ventricular Hypertrophy and Cardiovascular Disease Risk Prediction and Reclassification in Blacks and Whites: The ARIC Study. Am Heart J. 2015 Jan;169[1]:155-161.e5.
https://doi.org/10.1016/j.ahj.2014.09.013
PMid:25497261 PMCid:PMC4269255
Brown DW, Giles WH, Croft JB. Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. Am Heart J. 2000 Dec 1;140[6]:848-56.
https://doi.org/10.1067/mhj.2000.111112
PMid:11099987
Cunningham KS, Spears DA, Care M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sci Res. 2019 Aug 19;4[3]:223-40.
https://doi.org/10.1080/20961790.2019.1633761
PMid:31489388 PMCid:PMC6713129
Papadopoulos A, Palaiopanos K, Protogerou AP, Paraskevas GP, Tsivgoulis G, Georgakis MK. Left Ventricular Hypertrophy and Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. J Stroke. 2020 May;22[2]:206-24.
https://doi.org/10.5853/jos.2019.03335
PMid:32635685 PMCid:PMC7341009
Pandey A, Kraus WE, Brubaker PH, Kitzman DW. Healthy Aging and Cardiovascular Function. JACC Heart Fail. 2020 Feb;8[2]:111-21.
https://doi.org/10.1016/j.jchf.2019.08.020
PMid:31706837 PMCid:PMC10367061
Peverill RE. Changes in left ventricular size, geometry, pump function and left heart pressures during healthy aging. Rev Cardiovasc Med. 2021 Sep 24;22[3]:717-29.
https://doi.org/10.31083/j.rcm2203079
PMid:34565071
Roh J, Rhee J, Chaudhari V, Rosenzweig A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ Res. 2016 Jan 22;118[2]:279-95.
https://doi.org/10.1161/CIRCRESAHA.115.305250
PMid:26838314 PMCid:PMC4914047
Bhella PS, Hastings JL, Fujimoto N, Shibata S, Carrick -Ranson Graeme, Palmer MD, et al. Impact of Lifelong Exercise "Dose" on Left Ventricular Compliance and Distensibility. JACC. 2014 Sep 23;64[12]:1257-66.
https://doi.org/10.1016/j.jacc.2014.03.062
PMid:25236519 PMCid:PMC4272199
Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, et al. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol. 2014 Jan 9;4:396.
https://doi.org/10.3389/fphys.2013.00396
PMid:24409150 PMCid:PMC3885807
Santulli G, Ciccarelli M, Trimarco B, Iaccarino G. Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the β adrenergic system. Front Physiol. 2013 Aug 12;4:209.
https://doi.org/10.3389/fphys.2013.00209
Pandey A, Kraus WE, Brubaker PH, Kitzman DW. Healthy Aging and Cardiovascular Function. JACC Heart Fail. 2020 Feb;8[2]:111-21.
https://doi.org/10.1016/j.jchf.2019.08.020
PMid:31706837 PMCid:PMC10367061
Christou DD, Seals DR. Decreased maximal heart rate with aging is related to reduced β-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J Appl Physiol. 2008 Jul;105[1]:24-9.
https://doi.org/10.1152/japplphysiol.90401.2008
PMid:18483165 PMCid:PMC2494835
Wiersema JM, Kamphuis AEP, Rohling JHT, Kervezee L, Akintola AA, Jansen SW, et al. The association between continuous ambulatory heart rate, heart rate variability, and 24-h rhythms of heart rate with familial longevity and aging. Aging. 2022 Aug 16;14[18]:7223-39.
https://doi.org/10.18632/aging.204219
PMid:35980264 PMCid:PMC9550250
Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. The Lancet. 2006 Sep 16;368[9540]:1005-11.
https://doi.org/10.1016/S0140-6736(06)69208-8
PMid:16980116
Ambikairajah A, Walsh E, Cherbuin N. Lipid profile differences during menopause: a review with meta-analysis. Menopause. 2019 Nov;26[11]:1327.
https://doi.org/10.1097/GME.0000000000001403
PMid:31567869
Kim HL. Differences in Risk Factors for Coronary Atherosclerosis According to Sex. J Lipid Atheroscler. 2024 May;13[2]:97-110.
https://doi.org/10.12997/jla.2024.13.2.97
PMid:38826179 PMCid:PMC11140242
Feng L, Nian S, Tong Z, Zhu Y, Li Y, Zhang C, et al. Age-related trends in lipid levels: a large-scale cross-sectional study of the general Chinese population. BMJ Open. 2020;10[3]:e034226.
https://doi.org/10.1136/bmjopen-2019-034226
PMid:32193266 PMCid:PMC7202729
Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P, et al. Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta‐Analysis. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2016 Sep 14;5[9]:e002495.
https://doi.org/10.1161/JAHA.115.002495
PMid:27628572 PMCid:PMC5079002
Mousavi Zadeh SA, Caminiti G, Aracri M, Pieri M, Mitterhofer AP, De Lorenzo A, et al. Comparative Analysis of Cardiovascular Outcomes in Type 2 Diabetes Patients Engaging in Aerobic, Resistance, and Combined Training: A Systematic Review. Diabetology. 2025 May;6[5]:38.
https://doi.org/10.3390/diabetology6050038
Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res. 2002 Apr;54[1]:162-74.
https://doi.org/10.1016/S0008-6363(01)00565-X
PMid:12062372
Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007 Jun 19;115[24]:3086-94.
https://doi.org/10.1161/CIRCULATIONAHA.106.675041
PMid:17548726
Paluch AE, Boyer WR, Franklin BA, Laddu D, Lobelo F, Lee D chul, et al. Resistance Exercise Training in Individuals With and Without Cardiovascular Disease: 2023 Update: A Scientific Statement From the American Heart Association. Circulation. 2024 Jan 16;149[3]:e217-31.
https://doi.org/10.1161/CIR.0000000000001189
PMCid:PMC11209834
Momma H, Kawakami R, Honda T, Sawada SS. Muscle-strengthening activities are associated with lower risk and mortality in major non-communicable diseases: a systematic review and meta-analysis of cohort studies. Br J Sports Med. 2022 Jul;56[13]:755-63.
https://doi.org/10.1136/bjsports-2021-105061
PMid:35228201 PMCid:PMC9209691
Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007 Jul 31;116[5]:572-84.
https://doi.org/10.1161/CIRCULATIONAHA.107.185214
PMid:17638929
Lloyd-Jones DM, Allen NB, Anderson CAM, Black T, Brewer LC, Foraker RE, et al. Life's Essential 8: Updating and Enhancing the American Heart Association's Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation. 2022 Aug 2;146[5]:e18-43.
https://doi.org/10.1161/CIR.0000000000001078
Qadir R, Sculthorpe NF, Todd T, Brown EC. Effectiveness of Resistance Training and Associated Program Characteristics in Patients at Risk for Type 2 Diabetes: a Systematic Review and Meta-analysis. Sports Med - Open. 2021 May 29;7[1]:38.
https://doi.org/10.1186/s40798-021-00321-x
PMid:34050828 PMCid:PMC8164651
Casey DP, Beck DT, Braith RW. Progressive Resistance Training Without Volume Increases Does Not Alter Arterial Stiffness and Aortic Wave Reflection. Exp Biol Med. 2007 Oct;232[9]:1228-35.
https://doi.org/10.3181/0703-RM-65
PMid:17895531
DeVallance E, Fournier S, Lemaster K, Moore C, Asano S, Bonner D, et al. The effects of resistance exercise training on arterial stiffness in metabolic syndrome. Eur J Appl Physiol. 2016 May;116[5]:899-910.
https://doi.org/10.1007/s00421-016-3348-4
PMid:26941024 PMCid:PMC4835260
Evans W, Willey Q, Hanson ED, Stoner L. Effects of Resistance Training on Arterial Stiffness in Persons at Risk for Cardiovascular Disease: A Meta-analysis. Sports Med. 2018 Dec;48[12]:2785-95.
https://doi.org/10.1007/s40279-018-1001-6
PMid:30357656
Ceciliato J, Costa EC, Azevêdo L, Sousa JC, Fecchio RY, Brito LC. Effect of Resistance Training on Arterial Stiffness in Healthy Subjects: A Systematic Review and Meta-Analysis. Curr Hypertens Rep. 2020 Jul 15;22[8]:51.
https://doi.org/10.1007/s11906-020-01065-x
PMid:32671492
Cortezcooper M, Devan A, Anton M, Farrar R, Beckwith K, Todd J, et al. Effects of High Intensity Resistance Training on Arterial Stiffness and Wave Reflection in Women. Am J Hypertens. 2005 Jul;18[7]:930-4.
https://doi.org/10.1016/j.amjhyper.2005.01.008
PMid:16053989
Okamoto T, Masuhara M, Ikuta K. Upper but not lower limb resistance training increases arterial stiffness in humans. Eur J Appl Physiol. 2009 Sep;107[2]:127-34.
https://doi.org/10.1007/s00421-009-1110-x
PMid:19533164
Zhang Y, Zhang YJ, Ye W, Korivi M. Low-to-Moderate-Intensity Resistance Exercise Effectively Improves Arterial Stiffness in Adults: Evidence From Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Front Cardiovasc Med. 2021;8:738489.
https://doi.org/10.3389/fcvm.2021.738489
PMid:34708090 PMCid:PMC8544752
Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC. Effects of Exercise Modalities on Arterial Stiffness and Wave Reflection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLOS ONE. 2014 Oct 15;9[10]:e110034.
https://doi.org/10.1371/journal.pone.0110034
PMid:25333969 PMCid:PMC4198209
Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2013 Apr;47[6]:393-6.
https://doi.org/10.1136/bjsports-2012-090488
PMid:22267567
Yoshizawa M, Maeda S, Miyaki A, Misono M, Saito Y, Tanabe K, et al. Effect of 12 weeks of moderate-intensity resistance training on arterial stiffness: a randomised controlled trial in women aged 32-59 years. Br J Sports Med. 2009 Aug;43[8]:615-8.
https://doi.org/10.1136/bjsm.2008.052126
PMid:18927168
Figueroa A, Okamoto T, Jaime SJ, Fahs CA. Impact of high- and low-intensity resistance training on arterial stiffness and blood pressure in adults across the lifespan: a review. Pflüg Arch - Eur J Physiol. 2019 Mar;471[3]:467-78.
https://doi.org/10.1007/s00424-018-2235-8
PMid:30426247
Tahir M, Saeed A, Sohail A, Hassan A, Azfar H, Nazir UF. The Role of High-Intensity Interval Training [HIIT] vs Moderate-Intensity Continuous Training [MICT] in Improving Cardiovascular Fitness in Patients with Coronary Artery Disease: HIIT vs MICT for Cardiovascular Fitness in CAD. J Health Rehabil Res. 2024 Sep 13; 4[3]:1-4.
https://doi.org/10.61919/jhrr.v4i3.1481
Pack QR, Priya A, Lagu T, Pekow PS, Berry R, Atreya AR, et al. Cardiac rehabilitation utilization during an acute cardiac hospitalization: a national sample. J Cardiopulm Rehabil Prev. 2019;39[1]:19-26.
https://doi.org/10.1097/HCR.0000000000000374
PMid:30586111 PMCid:PMC6310017
Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness. JACC. 2010 Mar 30;55[13]:1318-27.
https://doi.org/10.1016/j.jacc.2009.10.061
PMid:20338492
de Oliveira GH, Boutouyrie P, Simões CF, Locatelli JC, Mendes VHS, Reck HB, et al. The impact of high-intensity interval training [HIIT] and moderate-intensity continuous training [MICT] on arterial stiffness and blood pressure in young obese women: a randomized controlled trial. Hypertens Res. 2020 Nov;43[11]:1315-8.
https://doi.org/10.1038/s41440-020-0477-2
PMid:32467641
Peng C, Yang L, Hu M, Yuan Z. Effects of high intensity interval training [HIIT] versus moderate intensity continuous training [MICT] on cardiopulmonary function, body composition, and physical function in cancer survivors A meta-analysis of randomized controlled trials. Front Physiol [Internet]: 2025 May 26 [cited 2025 Jun 10]; Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2025.1594574/full
https://doi.org/10.3389/fphys.2025.1594574
PMid:40584872 PMCid:PMC12202225
Gillet A, Forton K, Lamotte M, Macera F, Roussoulières A, Louis P, et al. Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study. J Clin Med. 2023 Jan;12[24]:7743.
https://doi.org/10.3390/jcm12247743
PMid:38137812 PMCid:PMC10743906
De Nardi AT, Tolves T, Lenzi TL, Signori LU, Silva AMV da. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: A meta-analysis. Diabetes Res Clin Pract. 2018 Mar;137:149-59.
https://doi.org/10.1016/j.diabres.2017.12.017
PMid:29329778
Zaki S, Alam MF, Sharma S, El-Ashker S, Ahsan M, Nuhmani S. Impact of Concurrent Exercise Training on Cardiac Autonomic Modulation, Metabolic Profile, Body Composition, Cardiorespiratory Fitness, and Quality of Life in Type 2 Diabetes with Cardiac Autonomic Neuropathy: A Randomized Controlled Trial. J Clin Med. 2024 Jul 3;13[13]:3910.
https://doi.org/10.3390/jcm13133910
PMid:38999476 PMCid:PMC11242881
Zaki S, Sharma S, Vats H. Effectiveness of concurrent exercise training in people with type 2 diabetes: A systematic review and meta-analysis. Physiother Theory Pract. 2024 Sep;40[9]:2094-115.
https://doi.org/10.1080/09593985.2023.2225717
PMid:37352215
Chen S, Zhou K, Shang H, Du M, Wu L, Chen Y. Effects of concurrent aerobic and resistance training on vascular health in type 2 diabetes: a systematic review and meta-analysis. Front Endocrinol. 2023 Sep 13;14:1216962.
https://doi.org/10.3389/fendo.2023.1216962
PMid:37780628 PMCid:PMC10534066
Khalafi M, Sakhaei MH, Rosenkranz SK, Symonds ME. Impact of concurrent training versus aerobic or resistance training on cardiorespiratory fitness and muscular strength in middle-aged to older adults: A systematic review and meta-analysis. Physiol Behav. 2022 Oct 1;254:113888.
https://doi.org/10.1016/j.physbeh.2022.113888
PMid:35728627
Bouamra M, Zouhal H, Ratel S, Makhlouf I, Bezrati I, Chtara M, et al. Concurrent Training Promotes Greater Gains on Body Composition and Components of Physical Fitness Than Single-Mode Training [Endurance or Resistance] in Youth With Obesity. Front Physiol. 2022 May 20;13:869063.
https://doi.org/10.3389/fphys.2022.869063
PMid:35669575 PMCid:PMC9164296
Baghban Baghdadabadi M, Sadeghi H, Eghbal Behbahani M, Kassaian SE, Nejatian M, Shirani S. The effect of concurrent training on the selected variables of blood and vascular biomechanics in patients after coronary artery angioplasty with an emphasis on gender. Sci Sports. 2024 May 1;39[3]:274-83.
https://doi.org/10.1016/j.scispo.2023.08.003
Mosti MP, Wang E, Wiggen ØN, Helgerud J, Hoff J. Concurrent strength and endurance training improves physical capacity in patients with peripheral arterial disease. Scand J Med Sci Sports. 2011;21[6]:e308-14.
https://doi.org/10.1111/j.1600-0838.2011.01294.x
PMid:21410546
Volterrani M, Caminiti G, Perrone MA, Cerrito A, Franchini A, Manzi V, et al. Effects of Concurrent, Within-Session, Aerobic and Resistance Exercise Training on Functional Capacity and Muscle Performance in Elderly Male Patients with Chronic Heart Failure. J Clin Med. 2023 Jan;12[3]:750.
https://doi.org/10.3390/jcm12030750
PMid:36769399 PMCid:PMC9917949
Alfaro-Chaverri A, Quindry J, Dumke C, Loyd B. A COMPARISON OF CONCURRENT TRAINING AND MODERATE INTENSITY CONTINUOUS TRAINING IN PATIENTS WITH CORONARY ARTERY DISEASE. Grad Stud Theses Diss Prof Pap [Internet]: 2024 Jan 1; Available from: https://scholarworks.umt.edu/etd/12317
Caminiti G, Perrone MA, Volterrani M, Iellamo F, Marazzi G, Selli S, et al. Effects of Concurrent Aerobic Plus Resistance Training on Blood Pressure Variability and Blood Pressure Values in Patients with Hypertension and Coronary Artery Disease: Gender-Related Differences. J Cardiovasc Dev Dis. 2022 Jun;9[6]:172.
https://doi.org/10.3390/jcdd9060172
PMid:35735801 PMCid:PMC9224805
Bayonas-Ruiz A, Muñoz-Franco FM, Sabater-Molina M, Martínez-González-Moro I, Gimeno-Blanes JR, Bonacasa B. Concurrent Resistance and Cardiorespiratory Training in Patients with Hypertrophic Cardiomyopathy: A Pilot Study. J Clin Med. 2024 Jan;13[8]:2324.
https://doi.org/10.3390/jcm13082324
PMid:38673596 PMCid:PMC11050913
Magder S, Linnarsson D, Gullstrand L. The effect of swimming on patients with ischemic heart disease. Circulation. 1981 May;63[5]:979-86.
https://doi.org/10.1161/01.CIR.63.5.979
PMid:7471381
Smith DL, Fernhall B. Advanced Cardiovascular Exercise Physiology. Human Kinetics: 257; 2023.
https://doi.org/10.5040/9781718243859
Rajar HA, Hashmi MA, Akhtar S, Amin U, John A. The Effect of High Intensity Interval Training in Reducing the Risk of Cardiovascular Diseases in Obese Type-I Individuals. Allied Med Res J. 2023;1[2]:86-95.
https://doi.org/10.59564/AMRJ/01.02/010
Carter JB, Banister EW, Blaber AP. Effect of Endurance Exercise on Autonomic Control of Heart Rate. Sports Med. 2003;33[1]:33-46.
https://doi.org/10.2165/00007256-200333010-00003
PMid:12477376
Kitzman DW, Brubaker PH, Herrington DM, Morgan TM, Stewart KP, Hundley WG, et al. Effect of Endurance Exercise Training on Endothelial Function and Arterial Stiffness in Older Patients With Heart Failure and Preserved Ejection Fraction. J Am Coll Cardiol. 2013 Aug;62[7]:584-92.
https://doi.org/10.1016/j.jacc.2013.04.033
PMid:23665370 PMCid:PMC3740089
Wallace JP. Exercise in hypertension. Sports Med. 2003;33[8]:1.
https://doi.org/10.2165/00007256-200333080-00004
PMid:12797840
Davoodi M, Rezaie S, Negarandeh Z, Gholamailishahi S, Mehdipoor M. Effects of Interval Training Intensity and Curcumin on expression of Endothelial Progenitor Cells mRNA and C Reactive Protein in Elderly Rats Heart. Clin Ter [Internet] 2022 [cited 2025 Jun 7]: 173[3]; Available from: http://www.clinicaterapeutica.it/ojs/index.php/1/article/view/233
Green DJ, Maiorana A, O'Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004 Nov;561[1]:1-25.
https://doi.org/10.1113/jphysiol.2004.068197
PMid:15375191 PMCid:PMC1665322
Gielen S, Schuler G, Hambrecht R. Exercise Training in Coronary Artery Disease and Coronary Vasomotion. Circulation [Internet] 2001 Jan 2 [cited 2025 Jun 7]: 103[1]; Available from: https://www.ahajournals.org/doi/10.1161/01.CIR.103.1.e1
https://doi.org/10.1161/01.CIR.103.1.e1
PMid:11136704
Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. Cmaj. 2006;174[6]:801-9.
https://doi.org/10.1503/cmaj.051351
PMid:16534088 PMCid:PMC1402378
Lee DC, Brellenthin AG, Lanningham-Foster LM, Kohut ML, Li Y. Aerobic, resistance, or combined exercise training and cardiovascular risk profile in overweight or obese adults: the CardioRACE trial. Eur Heart J. 2024 Apr 1;45[13]:1127-42.
https://doi.org/10.1093/eurheartj/ehad827
PMid:38233024 PMCid:PMC10984570
Cornelissen VA, Smart NA. Exercise Training for Blood Pressure: A Systematic Review and Meta-analysis. J Am Heart Assoc. 2013 Jan 23;2[1]:e004473.
https://doi.org/10.1161/JAHA.112.004473
PMid:23525435 PMCid:PMC3603230
Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for Hypertension: A Prescription Update Integrating Existing Recommendations with Emerging Research. Curr Hypertens Rep. 2015 Nov;17[11]:87.
https://doi.org/10.1007/s11906-015-0600-y
PMid:26423529 PMCid:PMC4589552
Queiroz AC, Gagliardi JF, Forjaz CL, Rezk CC. Clinic and ambulatory blood pressure responses after resistance exercise. J Strength Cond Res. 2009;23[2]:571-8.
https://doi.org/10.1519/JSC.0b013e318196b637
PMid:19209079
Haider Z, Masood T, Ashraf N, Sadiq A, Shah M, Ullah I. EFFECTS OF ENDURANCE AND RESISTANCE TRAINING ON BODY COMPOSITION: soi: 21-2017/re-trjvol02iss01p49. Rehabil J. 2018;2[01]:49-54.
https://doi.org/10.52567/trj.v2i01.36
Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, et al. Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. N Engl J Med. 2002 Nov 7;347[19]:1483-92.
https://doi.org/10.1056/NEJMoa020194
PMid:12421890
Wang X, Zheng M, Qin S, Li Y, Xu H. Effects of aerobic vs combined aerobic and resistance exercise training on maternal glucose metabolism, sympathetic nervous system control and cardiovascular hemodynamics in women with overweight/obesity during pregnancy. Ginekol Pol. 2025;96[3]:184-91.
https://doi.org/10.5603/gpl.102215
PMid:39902839
Terada T, Pap R, Thomas A, Wei R, Noda T, Visintini S, et al. Effects of muscle strength training combined with aerobic training versus aerobic training alone on cardiovascular disease risk indicators in patients with coronary artery disease: a systematic review and meta-analysis of randomised clinical trials. Br J Sports Med. 2024 Oct 22;58[20]:1225-34.
https://doi.org/10.1136/bjsports-2024-108530
PMid:39214675
Tan J, Krasilshchikov O, Kuan G, Hashim HA, Aldhahi MI, Al-Mhanna SB, et al. The Effects of Combining Aerobic and Heavy Resistance Training on Body Composition, Muscle Hypertrophy, and Exercise Satisfaction in Physically Active Adults. Healthcare. 2023 Aug 31;11[17]:2443.
https://doi.org/10.3390/healthcare11172443
PMid:37685476 PMCid:PMC10487730
Yu J, Lee E, Choi JH, Sun Y, Woo S, Cho S, et al. Effects of a 6-Week Concurrent Training Program Combining Resistance and Various Modalities of Aerobic Exercise in Obese Women with Prehypertension: A Randomized Controlled Trial. Metabolites. 2025 Apr;15[4]:278.
https://doi.org/10.3390/metabo15040278
PMid:40278407 PMCid:PMC12029520
Davoodi M, Rezaei S, Negarandeh Z, Gholamalishahi S. The evalutation of the effect of 12 weeks of water aerobic exercise and Atrovastain drug on apolipoproteins A1 Changes, ANP, BNP and CRP in older men with cardiovascular disesaes. Clin Ter [Internet] 2022 [cited 2025 Jun 7]: 173[4]; Available from: http://www.clinicaterapeutica.it/ojs/index.php/1/article/view/226
Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee IM. Dose Response Between Physical Activity and Risk of Coronary Heart Disease: A Meta-Analysis. Circulation. 2011 Aug 16;124[7]:789-95.
https://doi.org/10.1161/CIRCULATIONAHA.110.010710
PMid:21810663 PMCid:PMC3158733
Taylor CJ, Moore J, O'Flynn N. Diagnosis and management of chronic heart failure: NICE guideline update 2018. Br J Gen Pract. 2019 May 1;69[682]:265-6.
https://doi.org/10.3399/bjgp19X702665
PMid:31023695 PMCid:PMC6478474

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.