Evaluating C-peptide Levels in Children with Type 1 Diabetes and Its Association with Anthropometric and Clinical Variables

Authors

  • Raha Sahraian Department of Pediatric Endocrinology and Metabolism, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
  • Anis Amirhakimi Department of Pediatric Endocrinology and Metabolism, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
  • Parnia Kamyab Universal Scientific Education and Research Network, Fasa University of Medical Sciences, Fasa, Iran

DOI:

https://doi.org/10.31661/gmj.v14i.3787

Keywords:

C-peptide; Type 1 Diabetes Mellitus; Insulin; HbA1c; Glycemic Control

Abstract

Background: C-peptide, a byproduct of insulin production, plays significant physiological roles, including stabilizing blood glucose levels and protecting tissues. Its potential therapeutic role in Type 1 diabetes mellitus (T1DM) management remains underexplored, particularly in preserving β-cell function and improving glycemic control. Materials and Methods: This cross-sectional study included 69 pediatric patients with T1DM at Bo Ali Diabetes Clinic, Shiraz, Iran, from December 2022 to April 2023. Patients with a disease duration less than 2 years or metabolic comorbidities were excluded. Anthropometric measurements, HbA1c, and serum C-peptide levels were collected after three months of dietary counseling and insulin adjustment. Data were analyzed using Spearman’s correlation and linear regression. Results: The study population consisted of 69 children (mean age: 11.92 ± 3.65 years; mean disease duration: 63.13 ± 33.16 months). Serum C-peptide levels (mean: 87.02 ± 73.89 pmol/L) were inversely correlated with disease duration (ρ=-0.433, P<0.001) and HbA1c (ρ=-0.404, P=0.001). Regression analysis confirmed that both HbA1c and disease duration were significant predictors of C-peptide levels (P<0.05). However, no significant associations were observed between C-peptide and age, weight, height, or BMI. Conclusion: Reduced C-peptide levels are correlated with poorer glycemic control (greater HbA1c) and longer disease duration in children with T1DM. These findings highlight the clinical relevance of C-peptide supplementation as a potential therapeutic strategy to preserve β-cell function and improve long-term outcomes in T1DM management. Longitudinal studies are warranted to further evaluate its efficacy.

References

Desai S, Deshmukh A. Mapping of type 1 diabetes mellitus Curr. Diabetes Rev. 2020;16(5):438-41.

https://doi.org/10.2174/1573399815666191004112647

PMid:31584373

Association AD. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes-2019. Diabetes care. 2019;42:S34-S45.

https://doi.org/10.2337/dc19-S004

PMid:30559230

Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2019;15(11):635-50.

https://doi.org/10.1038/s41574-019-0254-y

PMid:31534209

Motamedi N, Zamanfar D, Rostamian Motlagh F, Yazdani Charati J. Investigating Diabetes-associated Autoantibodies and Their Relationship to Clinical Characteristics in Children Diagnosed With Type 1 Diabetes. J Pediatr Rev. 2024;12(2):191-8.

https://doi.org/10.32598/jpr.12.2.1145.1

Lawrence JM, Divers J, Isom S, Saydah S, Imperatore G, Pihoker C et al. Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017. Jama. 2021;326(8):717-27.

https://doi.org/10.1001/jama.2021.11165

PMid:34427600 PMCid:PMC8385600

Giwa AM, Ahmed R, Omidian Z, Majety N, Karakus KE, Omer SM et al. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World J Diabetes. 2020;11(1):13.

https://doi.org/10.4239/wjd.v11.i1.13

PMid:31938470 PMCid:PMC6927819

Transforming your care. Type 1 diabetes . symptoms and causes: 2023; Available from: https://www.mayoclinic.org/.

Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491-509.

https://doi.org/10.2217/fca-2018-0045

PMid:30409037

Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res . 2016;113:600-9.

https://doi.org/10.1016/j.phrs.2016.09.040

PMid:27697647

Kovacic JC, Castellano JM, Farkouh ME, Fuster V. The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Clin Endocrinol Metab. 2014;43(1):41-57.

https://doi.org/10.1016/j.ecl.2013.09.007

PMid:24582091

Leslie R. Metabolic changes in diabetes. Eye. 1993;7(2):205-8.

https://doi.org/10.1038/eye.1993.49

PMid:7607335

Zeng R, Huang S, Liao S. Research Progress of C-Peptide and Its Physiological Function. Int J Clin Med. 2020;11(05):207.

https://doi.org/10.4236/ijcm.2020.115021

Nada AH, Ibrahim IA, Oteri V, Shalabi L, Asar NK, Aqeilan SR, et al. Safety and efficacy of umbilical cord mesenchymal stem cells in the treatment of type 1 and type 2 diabetes mellitus: a systematic review and meta-analysis. Expert Rev Endocrinol Metab. 2025;20(2):107-117.

https://doi.org/10.1080/17446651.2025.2457474

PMid:39905688

Yosten GL, Maric-Bilkan C, Luppi P, Wahren J. Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab. 2014;307(11):E955-E68.

https://doi.org/10.1152/ajpendo.00130.2014

PMid:25249503 PMCid:PMC4254984

Fukunaga K, Morishita A, Imachi H, Oura K, Sato S, Kobayashi T, et al. Efficacy of imeglimin in patients with type 2 diabetes mellitus complicated by metabolic dysfunction-associated steatotic liver disease: A multicentre study. Diabetes Obes Metab. 2024;27(3):1498-1506.

https://doi.org/10.1111/dom.16157

PMid:39726210

Suh J, Lee HI, Lee M, Song K, Choi HS, Kwon A et al. Insulin requirement and complications associated with serum C-peptide decline in patients with type 1 diabetes mellitus during 15 years after diagnosis. Front Endocrinol (Lausanne). 2022;13:869204.

https://doi.org/10.3389/fendo.2022.869204

PMid:35518934 PMCid:PMC9061978

Leighton E, Sainsbury CA, Jones GC. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Ther. 2017;8(3):475-87.

https://doi.org/10.1007/s13300-017-0265-4

PMid:28484968 PMCid:PMC5446389

Jeyam A, Colhoun H, McGurnaghan S, Blackbourn L, McDonald TJ, Palmer CNA, et al. Clinical Impact of Residual C-Peptide Secretion in Type 1 Diabetes on Glycemia and Microvascular Complications. Diabetes Care. 2021;44(2):390-8.

https://doi.org/10.2337/dc20-0567

PMid:33303639

Gubitosi-Klug RA, Braffett BH, Hitt S, Arends V, Uschner D, Jones K, et al. Residual β cell function in long-term type 1 diabetes associates with reduced incidence of hypoglycemia. J Clin Invest. 2021;131(3):e14011.

https://doi.org/10.1172/JCI143011

PMid:33529168 PMCid:PMC7843223

Tascini G, Berioli MG, Cerquiglini L, Santi E, Mancini G, Rogari F et al. Carbohydrate counting in children and adolescents with type 1 diabetes. Nutrients. 2018;10(1):109.

https://doi.org/10.3390/nu10010109

PMid:29361766 PMCid:PMC5793337

Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes spectr. 2004;17(3):183-90.

https://doi.org/10.2337/diaspect.17.3.183

Poteryaeva ON, Usynin IF. [Molecular mechanisms of action and physiological effects of the proinsulin C-peptide (a systematic review)]. Biomed Khim. 2020;66(3):196-207.

https://doi.org/10.18097/pbmc20206603196

PMid:32588825

Shpakov A. Mechanisms of action and therapeutic potential of proinsulin C-peptide. J Evol Biochem Physiol. 2017;53:180-90.

https://doi.org/10.1134/S0022093017030024

Bhatt MP, Lim Y-C, Ha K-S. C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy. Cardiovasc Res. 2014;104(2):234-44.

https://doi.org/10.1093/cvr/cvu211

PMid:25239825

Azulay RS, Rodrigues V, Lago DCF, Almeida AGFPd, Abreu JDAMFd, Matos L, et al. Relationship Between C-Peptide Levels, Clinical Features, and Serum Data in a Brazilian Type 1 Diabetes Population with Large Variations in Genomic Ancestry. Int J Mol Sci. 2024;25(20):11144.

https://doi.org/10.3390/ijms252011144

PMid:39456927 PMCid:PMC11508759

Valenzise M, Bombaci B, Lombardo F, Passanisi S, Lombardo C, Lugarà C, et al. Association between osteocalcin and residual β-cell function in children and adolescents newly diagnosed with type 1 diabetes: a pivotal study. J Endocrinol Invest. 2025;48(1):227-32.

https://doi.org/10.1007/s40618-024-02414-2

PMid:38965181

Nadeau KJ, Arslanian SA, Bacha F, Caprio S, Chao LC, Farrell R et al. Insulin clearance at randomisation and in response to treatment in youth with type 2 diabetes: a secondary analysis of the TODAY randomised clinical trial. Diabetologia. 2024:1-12.

https://doi.org/10.1007/s00125-024-06327-w

PMid:39706874

Hoffman RP. Indices of insulin action calculated from fasting glucose and insulin reflect hepatic, not peripheral, insulin sensitivity in African‐American and Caucasian adolescents. Pediatr Diabetes. 2008;9(32):57-61.

https://doi.org/10.1111/j.1399-5448.2007.00350.x

PMid:18221434

Bloomgarden Z. Can type 1 diabetes be prevented or reversed? Journal of Diabetes. 2024;16(5):e13572.

https://doi.org/10.1111/1753-0407.13572

PMid:38741346 PMCid:PMC11091426

Galderisi A, Sims EK, Evans-Molina C, Petrelli A, Cuthbertson D, Nathan BM et al. Trajectory of beta cell function and insulin clearance in stage 2 type 1 diabetes: natural history and response to teplizumab. Diabetologia. 2024:1-16.

https://doi.org/10.1007/s00125-024-06323-0

PMid:39560746 PMCid:PMC11832608

Koca SB, Takcı MZ, Deniz R, Özcan S, Çeleğen M, Dursun A. Change in the Frequency of Diabetic Ketoacidosis in Children with Newly Diagnosed Type 1 Diabetes in the Central Anatolia Region of Turkey over the Years Before and After the Coronavirus Disease 2019 Pandemic: A Single-Center Experience. Turk Arch Pediatr. 2024;59(2):163.

https://doi.org/10.5152/TurkArchPediatr.2024.23255

PMid:38454225 PMCid:PMC11059482

Akram RS, Jafer AA, Jassem HS. Evaluation of Adiponectin Level and Other Clinical Variables in Iraqi Adolescence Type 1 Diabetic Patients. BMB. 2024;46(3):2223-2226.

Esze R, Barna S, Fülöp P, Kempler P, Mikó M, Páll D, et al. C-peptide: an essential ally in microvascular complications of type 2 diabetes mellitus and obesity. Diabetol metab syndr. 2024;16(1):211.

https://doi.org/10.1186/s13098-024-01454-1

PMid:39210480 PMCid:PMC11361105

Mahmoud MA, Osman NM, Ali AH. Pancreatic Shear Wave Elastography in Pediatrics with Type I DM. QJM. 2024;117:hcae175. 938.

https://doi.org/10.1093/qjmed/hcae175.938

Taylor PN, Collins KS, Lam A, Karpen SR, Greeno B, Walker F et al. C-peptide and metabolic outcomes in trials of disease modifying therapy in new-onset type 1 diabetes: an individual participant meta-analysis. Lancet Diabetes Endocrinol. 2023;11(12):915-25.

https://doi.org/10.1016/S2213-8587(23)00267-X

PMid:37931637

Jiang Y, Wang X, Zhao X, Sun Y, Huang P, Que Q et al. The correlation between patients with type 2 diabetes mellitus and chronic microvascular complications during the glucose peak time. JDC. 2024;38(11):108866.

https://doi.org/10.1016/j.jdiacomp.2024.108866

PMid:39317129

Lachin JM, McGee P, Palmer JP. Impact of C-peptide preservation on metabolic and clinical outcomes in the Diabetes Control and Complications Trial. Diabetes. 2014;63(2):739-48.

https://doi.org/10.2337/db13-0881

PMid:24089509 PMCid:PMC3900540

Brown L, Edelman ER. Optimal control of blood glucose: the diabetic patient or the machine? Sci Transl Med. 2010;2(27):27ps18-27ps18.

https://doi.org/10.1126/scitranslmed.3001083

PMid:20393187 PMCid:PMC4620569

Ryk A, Łosiewicz A, Michalak A, Fendler W. Biological Activity of c-Peptide in Microvascular Complications of Type 1 Diabetes-Time for Translational Studies or Back to the Basics? Int J Mol Sci. 2020;21(24): 9723.

https://doi.org/10.3390/ijms21249723

PMid:33419247 PMCid:PMC7766542

Chen J, Huang Y, Liu C, Chi J, Wang Y, Xu L. The role of C-peptide in diabetes and its complications: an updated review. Front Endocrinol (Lausanne). 2023;14:1256093.

https://doi.org/10.3389/fendo.2023.1256093

PMid:37745697 PMCid:PMC10512826

Forst T, Kunt T, Wilhelm B, Weber MM, Pfützner A. Role of C-Peptide in the regulation of microvascular blood flow. Exp Diabetes Res. 2008;2008:176245.

https://doi.org/10.1155/2008/176245

PMid:18670621 PMCid:PMC2491698

Downloads

Published

2025-08-08

How to Cite

Sahraian, R., Amirhakimi, A., & Kamyab, P. (2025). Evaluating C-peptide Levels in Children with Type 1 Diabetes and Its Association with Anthropometric and Clinical Variables. Galen Medical Journal, 14, e3787. https://doi.org/10.31661/gmj.v14i.3787

Issue

Section

Original Article