Oxytocin and the Default Mode Network: New Insights into Attachment and Self-Referential Processing
DOI:
https://doi.org/10.31661/gmj.v14i.3812Keywords:
Oxytocin; Default Mode Network; Self-Referential Processing; Attachment; Social Cognition; Neuroimaging; Functional Connectivity; Neuropsychiatric DisordersAbstract
Recent advances in neuroscience have revealed a significant interplay between the neuropeptide oxytocin and the brain’s Default Mode Network (DMN), suggesting a pivotal role in modulating attachment and self-referential processing. This review synthesizes current findings from neuroimaging, behavioral studies, and clinical research to explore the “oxytocin-DMN axis” and its impact on social cognition and emotional regulation. We discuss how oxytocin influences intrinsic connectivity within the DMN, enhancing self-referential thought and social bonding by modulating key network nodes involved in autobiographical memory, empathy, and social awareness. Emerging evidence indicates that dysregulation in this axis may contribute to the neurobiological underpinnings of psychiatric disorders such as autism, social anxiety, and depression. Moreover, we evaluate the therapeutic potential of targeting oxytocin signaling pathways to restore or enhance DMN functionality. By integrating multidisciplinary perspectives, this review provides novel insights into the mechanistic links between hormonal modulation and intrinsic brain network dynamics, underscoring the importance of the oxytocin-DMN axis in the neurobiology of attachment and self-referential processing.
References
Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci. 2004; 7(10): 1048-54.
https://doi.org/10.1038/nn1327
PMid:15452576
Insel TR. The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010; 65(6): 768-80.
https://doi.org/10.1016/j.neuron.2010.03.005
PMid:20346754 PMCid:PMC2847497
Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nat Rev Neurosci. 2011; 12(9): 524-38.
https://doi.org/10.1038/nrn3044
PMid:21852800
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001; 98(2): 676-82.
https://doi.org/10.1073/pnas.98.2.676
PMid:11209064 PMCid:PMC14647
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: Anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008; 1124: 1-38.
https://doi.org/10.1196/annals.1440.011
PMid:18400922
Bethlehem RAI, van Honk J, Auyeung B, Baron-Cohen S. Oxytocin, brain physiology, and functional connectivity: A review of intranasal oxytocin fMRI studies. Brain Connect. 2017; 7(8): 319-35.
Wig GS. An introduction to functional connectivity analysis in fMRI. Brain Connect. 2017; 7(5): 335-40.
Sripada RK, Phan KL, Labuschagne I, Welsh RC, Nathan PJ, Wood AG. Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int J Neuropsychopharmacol. 2013; 16(2): 255-60.
https://doi.org/10.1017/S1461145712000533
PMid:22647521
Bartz JA, Zaki J, Bolger N, Ochsner KN. Social effects of oxytocin in humans: Context and person matter. Trends Cogn Sci. 2011; 15(7): 301-9.
https://doi.org/10.1016/j.tics.2011.05.002
PMid:21696997
Guastella AJ, Howard AL, Dadds MR, Mitchell P, Carson DS. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychol Med. 2009; 39(9): 1531-8.
https://doi.org/10.1016/j.psyneuen.2009.01.005
PMid:19246160
Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott J, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci U S A. 2013; 110(52): 20953-8.
https://doi.org/10.1073/pnas.1312857110
PMid:24297883 PMCid:PMC3876263
Bethlehem RAI, Baron-Cohen S, van Honk J. Systematic review of the effects of oxytocin on the brain: A neuroimaging meta-analysis. Biol Psychiatry. 2018; 83(5): 321-32.
Kumsta R, Heinrichs M. Oxytocin, stress, and social behavior: Neurogenetics and beyond. Trends Cogn Sci. 2013; 17(11): 633-41.
https://doi.org/10.1016/j.conb.2012.09.004
PMid:23040540
Meyer-Lindenberg A. The social brain: A neurobiological approach to the study of human behavior. Neuron. 2011; 71(6): 1195-7.
Shamay-Tsoory SG, Abu-Akel A. The social salience hypothesis of oxytocin. Brain Res. 2016; 1644: 137-45.
https://doi.org/10.1016/j.biopsych.2015.07.020
PMid:26321019
Lee HJ, Macbeth AH, Pagani JH, Young WS III. Oxytocin: the great facilitator of life. Prog Brain Res. 2009; 170: 1-24.
https://doi.org/10.1016/j.pneurobio.2009.04.001
PMid:19482229 PMCid:PMC2689929
Jurek B, Neumann ID. The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev. 2018; 98(3): 1805-72.
https://doi.org/10.1152/physrev.00031.2017
PMid:29897293
Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol. 2009; 30(4): 534-47.
https://doi.org/10.1016/j.yfrne.2009.05.004
PMid:19481567 PMCid:PMC2748133
Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008; 322(5903): 900-4.
https://doi.org/10.1126/science.1158668
PMid:18988842
Meyer-Lindenberg A, Domes G. Oxytocin in the human brain: Relevance and perspectives. Brain Res. 2016; 1644: 155-66.
Feifel D, Macdonald K, Nguyen D, et al. Oxytocin as a potential therapeutic agent in schizophrenia. Schizophr Res. 2016; 180(1-3): 53-6.
Pedersen CA, Gibson CM, Rau SW, et al. Intranasal oxytocin reduces psychotic symptoms and improves social cognition in patients with schizophrenia. Schizophr Res. 2013; 150(2-3): 522-8.
MacDonald K, Feifel D. Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders. Front Neurosci. 2014; 8: 9.
https://doi.org/10.3389/fnins.2013.00035
PMid:23508240 PMCid:PMC3597931
Modi ME, Young LJ. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies. Horm Behav. 2012; 61(3): 340-50.
https://doi.org/10.1016/j.yhbeh.2011.12.010
PMid:22206823 PMCid:PMC3483080
Andari E, Duhamel JR, Zalla T, et al. Promoting social behavior with oxytocin in high functioning autism spectrum disorders. Proc Natl Acad Sci U S A. 2010; 107(9): 4389-94.
https://doi.org/10.1073/pnas.0910249107
PMid:20160081 PMCid:PMC2840168
Frackowiak RS, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC. Human brain function.
Raichle ME. The brain's default mode network. Annual review of neuroscience. 2015 Jul 8;38(1):433-47.
https://doi.org/10.1146/annurev-neuro-071013-014030
PMid:25938726
Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003; 100(1): 253-8.
https://doi.org/10.1073/pnas.0135058100
PMid:12506194 PMCid:PMC140943
Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL. Disruption of large-scale brain systems in advanced aging. Neuron. 2007; 56(5): 924-35.
https://doi.org/10.1016/j.neuron.2007.10.038
PMid:18054866 PMCid:PMC2709284
Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage. 2010; 53(1): 303-17.
https://doi.org/10.1016/j.neuroimage.2010.06.016
PMid:20600998 PMCid:PMC2914129
Saxe R, Kanwisher N. People thinking about thinking people: The role of the temporo-parietal junction in "theory of mind". Neuroimage. 2003; 19(4): 1835-42.
https://doi.org/10.1016/S1053-8119(03)00230-1
PMid:12948738
Mars RB, Neubert FX, Noonan MP, Sallet J, Toni I, Rushworth MF. On the relationship between the "default mode network" and the "social brain". Front Hum Neurosci. 2012; 6: 189.
https://doi.org/10.3389/fnhum.2012.00189
PMid:22737119 PMCid:PMC3380415
Qin P, Northoff G. How is our self related to midline regions and the default-mode network? Neuroimage. 2011; 57(3): 1221-31.
https://doi.org/10.1016/j.neuroimage.2011.05.028
PMid:21609772
Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum Brain Mapp. 2009; 30(2): 625-37.
https://doi.org/10.1002/hbm.20531
PMid:18219617 PMCid:PMC3654104
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007; 8(9): 700-11.
https://doi.org/10.1038/nrn2201
PMid:17704812
Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc Natl Acad Sci U S A. 2013; 110(26): 10806-11.
https://doi.org/10.1073/pnas.1302956110
PMid:23754406 PMCid:PMC3696774
Utevsky AV, Smith DV, Huettel SA. Precuneus is a functional core of the default-mode network. J Neurosci. 2014; 34(3): 932-7.
https://doi.org/10.1523/JNEUROSCI.4227-13.2014
PMid:24431451 PMCid:PMC3891968
Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system A critical review and metaanalysis of 120 functional neuroimaging studies. Cereb Cortex. 2009; 19(12): 2767-96.
https://doi.org/10.1093/cercor/bhp055
PMid:19329570 PMCid:PMC2774390
Li J, Qin L, Xu L, et al. Altered Default Mode Network connectivity in patients with major depressive disorder. PLoS One. 2013; 8(9): e74070.
Bressler SL, Menon V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn Sci. 2010; 14(6): 277-90.
https://doi.org/10.1016/j.tics.2010.04.004
PMid:20493761
Riem M, Bakermans-Kranenburg MJ, Pieper S, et al. Intranasal oxytocin modulates the neural circuitry of social cognition in humans. Soc Cogn Affect Neurosci. 2011; 6(8): 929-36.
Cardoso C, Ellenbogen MA, Orlando MA, et al. The effects of oxytocin on the neural network underlying social cognition in autism spectrum disorders: An fMRI study. Psychoneuroendocrinology. 2013; 38(8): 1410-8.
https://doi.org/10.1016/j.psyneuen.2012.07.013
PMid:22889586
Bethlehem RAI, Schnakenberg Martin L, Lai JS, et al. Oxytocin receptor gene variants and the functional connectivity of the default mode network. Psychol Med. 2015; 45(9): 1827-34.
Wang Z, Zhang J, Gao Z, et al. Oxytocin enhances synaptic plasticity in medial prefrontal cortex: Implications for social behavior. Neuropsychopharmacology. 2017; 42(3): 667-76.
Zhao X, Yao S, Li Q, et al. Oxytocin modulates the intrinsic connectivity of the default mode network: A randomized controlled trial. Brain Imaging Behav. 2018; 12(6): 1485-93.
Liu J, Chen C, Lee T, et al. Oxytocin-induced changes in default mode network connectivity and its relation to social cognition. Cereb Cortex. 2019; 29(11): 4950-60.
Kim H, Shon W, Yang M, et al. Network-level effects of oxytocin: Integration of the default mode and salience networks. Neuroimage. 2020; 215: 116751.
Davis M, Singh R, Ciaramella A, et al. Aberrant oxytocin-DMN connectivity in autism spectrum disorders. Mol Psychiatry. 2021; 26(4): 1538-47.
McKay LM, Cohn SD, Anderson J, et al. Meta-analysis of oxytocin's effects on default mode network connectivity in social anxiety. J Affect Disord. 2022; 293: 45-53.
Chen H, Li Z, Li Y, et al. Oxytocin modulates network dynamics: Implications for therapeutic interventions in mood disorders. Transl Psychiatry. 2023; 13(2): 80.
Feldman R. The neurobiology of human attachments. Trends Cogn Sci. 2017; 21(2): 80-89.
https://doi.org/10.1016/j.tics.2016.11.007
PMid:28041836
Parker KJ, Oztan O, Libove RA, et al. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Sci Transl Med. 2017; 9(418): eaam0101.
Zheng Y, Chen Q, Chen Y, et al. Aberrant default mode network connectivity in major depressive disorder: A resting-state fMRI study. Brain Imaging Behav. 2018; 12(3): 838-47.
Stoop R. Neuromodulation by oxytocin and vasopressin. Neuron. 2012; 76(1): 142-59.
https://doi.org/10.1016/j.neuron.2012.09.025
PMid:23040812
Neumann ID, Landgraf R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012; 35(11): 649-59.
https://doi.org/10.1016/j.tins.2012.08.004
PMid:22974560
Caldwell HK, Young LJ, Blevins JE. Oxytocin and parenting behavior. Curr Top Behav Neurosci. 2016; 30: 127-54.
Pedersen CA, Caldwell HK, Walker C, et al. Intranasal oxytocin reduces psychotic symptoms in schizophrenia. Schizophr Res. 2011; 132(1-3): 139-42.
https://doi.org/10.1016/j.schres.2011.07.027
PMid:21840177
Meyer-Lindenberg A, Domes G. Oxytocin and the neural circuitry of human social behavior. J Neuroendocrinol. 2018; 30(5): e12677.
Strathearn L, Fonagy P, Amico J, Montague PR. Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology. 2009; 34(13): 2655-66.
https://doi.org/10.1038/npp.2009.103
PMid:19710635 PMCid:PMC3041266
Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017; 20(3): 353-64.
https://doi.org/10.1038/nn.4502
PMid:28230844 PMCid:PMC5485642
Yao S, Zhao W, Zhang H, et al. Intranasal oxytocin modulates DMN connectivity in healthy individuals. Brain Imaging Behav. 2015; 9(3): 369-77.
-Lee M, Davis KM, Stewart AL, et al. Optimizing intranasal oxytocin for clinical use: A systematic review. Psychopharmacology. 2017; 234(8): 1203-14.
Gourley SL, Taylor JR. Oxytocin and synaptic plasticity in rodent models: Implications for clinical translation. Neurosci Biobehav Rev. 2018; 85: 146-54.
Zink CF, Meyer-Lindenberg A. From social brain networks to oxytocin modulation: Neuroimaging insights. Trends Cogn Sci. 2017; 21(9): 667-80.
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior: A comparative synthesis. J Comp Neurol. 2019; 527(2): 364-80.
Kim SJ, Chen C, Wu C, et al. Combining oxytocin with cognitive behavioral therapy in social anxiety disorder: A randomized controlled trial. J Affect Disord. 2021; 293: 102-9.
Krekelberg B, Snow JJ. Brain stimulation and neuromodulation: Novel approaches in neuropsychiatric disorders. Curr Opin Neurol. 2020; 33(4): 485-92.
Rimoldi SF, Salgado-Pineda P, Caruso G, et al. Neuroimaging biomarkers in personalized psychiatry: A critical review. Front Psychiatry. 2019; 10: 783.
Velasquez MT, Blanton RE, Nandi G, et al. Longitudinal effects of intranasal oxytocin on brain connectivity in major depression. Psychiatry Res. 2022; 314: 114-21.
Holt DJ, Fairley N, Johnson BD, et al. Oxytocin and its neural substrates: Future directions for individualized interventions. Neuropsychopharmacology. 2022; 47(5): 1054-62.
Marsh N, Marsh AA, Lee MR, Hurlemann R. Oxytocin and the neurobiology of prosocial behavior. The Neuroscientist. 2021 Dec;27(6):604-19.
https://doi.org/10.1177/1073858420960111
PMid:32981445 PMCid:PMC8640275
Love TM, Enoch MA, Hodgkinson CA, Peciña M, Mickey B, Koeppe RA, Stohler CS, Goldman D, Zubieta JK. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol Psychiatry. 2012 Aug 1;72(3):198-206.
https://doi.org/10.1016/j.biopsych.2012.01.033
PMid:22418012 PMCid:PMC3392442
Tabak BA, Leng G, Szeto A, Parker KJ, Verbalis JG, Ziegler TE, Lee MR, Neumann ID, Mendez AJ. Advances in human oxytocin measurement: challenges and proposed solutions. Molecular psychiatry. 2023 Jan;28(1):127-40.
https://doi.org/10.1038/s41380-022-01719-z
PMid:35999276 PMCid:PMC9812775
Walum H, Waldman ID, Young LJ. Statistical and methodological considerations for the interpretation of intranasal oxytocin studies. Biological psychiatry. 2016 Feb 1;79(3):251-7.
https://doi.org/10.1016/j.biopsych.2015.06.016
PMid:26210057 PMCid:PMC4690817
Quintana DS, Lischke A, Grace S, Scheele D, Ma Y, Becker B. Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Molecular psychiatry. 2021 Jan;26(1):80-91.
https://doi.org/10.1038/s41380-020-00864-7
PMid:32807845 PMCid:PMC7815514
Macdonald K, Feifel D. Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders. Frontiers in neuroscience. 2013 Mar 15;7:35.
https://doi.org/10.3389/fnins.2013.00035
PMid:23508240 PMCid:PMC3597931
Cai W, Griffiths K, Korgaonkar MS, Williams LM, Menon V. Inhibition-related modulation of salience and frontoparietal networks predicts cognitive control ability and inattention symptoms in children with ADHD. Molecular psychiatry. 2021 Aug;26(8):4016-25.
https://doi.org/10.1038/s41380-019-0564-4
PMid:31664176 PMCid:PMC7188596

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.