Multimodal Neuroimaging and Electrophysiological Markers in Multiple Sclerosis: An Integrative Review of fMRI, EEG, and EMG Approaches

Authors

  • Mohammad Hossein Salemi Department of Psychology, University of Tehran, Iran

Keywords:

Multiple Sclerosis; Functional MRI; Electroencephalography; Electromyography

Abstract

.Multiple sclerosis (MS) is a chronic neurological disease marked by demyelination, neurodegeneration, and widespread network dysfunction. While conventional MRI remains central to diagnosis, advanced techniques such as functional MRI (fMRI), electroencephalography (EEG), and electromyography (EMG) are increasingly recognized for their ability to capture dynamic functional changes that underlie clinical symptoms. This review explores the individual and combined applications of fMRI, EEG, and EMG in MS, emphasizing recent clinical findings from 2019 to 2024. fMRI provides high-resolution mapping of brain activation and connectivity, revealing compensatory plasticity in early stages and connectivity breakdowns associated with progression. EEG offers real-time monitoring of cortical activity, detecting spectral slowing, network reorganization, and neurophysiological correlates of fatigue and cognitive decline. EMG quantifies neuromuscular output, identifying spasticity, motor unit loss, and gait disturbances with high sensitivity. Integration of these modalities enhances spatial and temporal resolution; however, challenges such as data standardization and interpretive variability must be addressed to ensure robust biomarker development. Advances in machine learning, portable EEG/EMG systems, and big-data infrastructure are driving the translation of multimodal monitoring into clinical practice. Real-time assessments and individualized biomarker profiles could enable earlier diagnosis, more accurate prognosis, and personalized rehabilitation and therapy strategies. Although technical, interpretive, and standardization challenges remain, the convergence of fMRI, EEG, and EMG offers a promising path toward precision medicine in MS. Multimodal approaches not only deepen understanding of MS pathophysiology but also hold tangible potential to transform disease monitoring, treatment decision-making, and patient outcomes.

References

Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018 Jan 11;378(2):169-80.

https://doi.org/10.1056/NEJMra1401483

PMid:29320652 PMCid:PMC6942519

Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis: Lessons learned about the human brain. NeuroImage. 2019 Apr 15;190:32-45.

https://doi.org/10.1016/j.neuroimage.2017.09.021

PMid:28917696

Statsenko Y, Smetanina D, Arora T, Östlundh L, Habuza T, Simiyu GL, et al. Multimodal diagnostics in multiple sclerosis: predicting disability and conversion from relapsingremitting to secondary progressive disease course - protocol for systematic review and metaanalysis. BMJ Open. 2023 Jul 14;13(7):e068608.

https://doi.org/10.1136/bmjopen-2022-068608

PMid:37451729 PMCid:PMC10351237

Cordani C, Meani A, Esposito F, Valsasina P, Colombo B, Pagani E, et al. Imaging correlates of hand motor performance in multiple sclerosis: A multiparametric structural and functional MRI study. Mult Scler J. 2020 Feb 1;26(2):233-44.

https://doi.org/10.1177/1352458518822145

PMid:30657011

Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. GraphBased Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci. 2023 Feb;13(2):246.

https://doi.org/10.3390/brainsci13020246

PMid:36831789 PMCid:PMC9953947

Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task and restingstate fMRI studies in multiple sclerosis: From regions to systems and timevarying analysis Current status and future perspective. NeuroImage Clin. 2022 Jun 6;35:103076.

https://doi.org/10.1016/j.nicl.2022.103076

PMid:35691253 PMCid:PMC9194954

Pantano P, Petsas N, Tona F, Sbardella E. The Role of fMRI to Assess Plasticity of the Motor System in MS. Front Neurol. 2015 Mar 16;6:55.

https://doi.org/10.3389/fneur.2015.00055

PMid:25852634 PMCid:PMC4360702

Keune PM, Hansen S, Weber E, Zapf F, Habich J, Muenssinger J, et al. Exploring restingstate EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis. Clin Neurophysiol. 2017 Sep;128(9):1746-54.

https://doi.org/10.1016/j.clinph.2017.06.253

PMid:28772244

Zinn MA, Zinn ML, Valencia I, Jason LA, Montoya JG. Cortical hypoactivation during resting EEG suggests central nervous system pathology in patients with chronic fatigue syndrome. Biol Psychol. 2018 Jul;136:87-99.

https://doi.org/10.1016/j.biopsycho.2018.05.016

PMid:29802861 PMCid:PMC6064389

Knežević S. BRAINCOMPUTER INTERFACES IN NEUROREHABILITATION FOR CENTRAL NERVOUS SYSTEM DISEASES APPLICATIONS IN STROKE, MULTIPLE SCLEROSIS AND PARKINSON'S DISEASE. Sanamed [Internet]: 2025 Feb 16 [cited 2025 May 13] ; Available from: https://aseestant.ceon.rs/index.php/sanamed/article/view/54685

Grippe T, Cunha NSC da, Brandão PR de P, Fernandez RNM, Cardoso FEC. How can neurophysiological studies help with movement disorders characterization in clinical practice A review. Arq Neuropsiquiatr. 2020 May 29;78:512-22.

https://doi.org/10.1590/0004-282x20190195

PMid:32901697

Fernández V. The Use of MotorEvoked Potentials in Clinical Trials in Multiple Sclerosis. J Clin Neurophysiol. 2021 May;38(3):166-70.

https://doi.org/10.1097/WNP.0000000000000734

PMid:33958566

Leocani L, Guerrieri S, Comi G. Visual Evoked Potentials as a Biomarker in Multiple Sclerosis and Associated Optic Neuritis. J Neuroophthalmol. 2018 Sep;38(3):350.

https://doi.org/10.1097/WNO.0000000000000704

PMid:30106802

Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler Houndmills Basingstoke Engl. 2017 Sep;23(10):1309-19.

https://doi.org/10.1177/1352458517707265

PMid:28480798 PMCid:PMC5564950

Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, Stefano ND, et al. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. Lancet Reg Health. Eur [Internet] 2024 Sep 1: [cited 2025 May 14]; Available from: https://www.thelancet.com/journals/lanepe/article/PIIS26667762(24)001455/fulltext

Salim AA, Ali SH, Hussain AM, Ibrahim WN. Electroencephalographic evidence of gray matter lesions among multiple sclerosis patients. Medicine (Baltimore). 2021 Aug 20;100(33):e27001.

https://doi.org/10.1097/MD.0000000000027001

PMid:34414988 PMCid:PMC8376360

Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. Wires Mech Dis. 2023;15(1):e1583.

https://doi.org/10.1002/wsbm.1583

PMid:35948371 PMCid:PMC9839517

DalBianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord. 2024 Aug 1;17:17562864241306684.

https://doi.org/10.1177/17562864241306684

PMid:39711984 PMCid:PMC11660293

Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurol. 2019 Dec 1;76(12):1474-83.

https://doi.org/10.1001/jamaneurol.2019.2399

PMid:31403674 PMCid:PMC6692692

Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. The American journal of pathology. 2000 Jul 1;157(1):26776.

https://doi.org/10.1016/S0002-9440(10)64537-3

PMid:10880396

Lassmann H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front Immunol. 2018;9:3116.

https://doi.org/10.3389/fimmu.2018.03116

PMid:30687321 PMCid:PMC6335289

Jäkel S, Agirre E, Mendanha Falcão A, van Bruggen D, Lee KW, Knuesel I, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019 Feb;566(7745):543-7.

https://doi.org/10.1038/s41586-019-0903-2

PMid:30747918 PMCid:PMC6544546

Harlow DE, Honce JM, Miravalle AA. Remyelination Therapy in Multiple Sclerosis. Front Neurol. 2015 Dec 10;6:257.

https://doi.org/10.3389/fneur.2015.00257

PMid:26696956 PMCid:PMC4674562

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 Feb 1;17(2):162-73.

https://doi.org/10.1016/S1474-4422(17)30470-2

PMid:29275977

Scalfari A, Romualdi C, Nicholas RS, Mattoscio M, Magliozzi R, Morra A, et al. The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology. 2018 Jun 12;90(24):e2107-18.

https://doi.org/10.1212/WNL.0000000000005685

PMid:29769373

Griffiths L, Reynolds R, Evans R, Bevan RJ, Rees MI, Gveric D, et al. Substantial subpial cortical demyelination in progressive multiple sclerosis: have we underestimated the extent of cortical pathology? Neuroimmunol Neuroinflammation. 2020 Mar 21;7(1):51-67.

https://doi.org/10.20517/2347-8659.2019.21

Sechi E, Messina S, Keegan BM, Buciuc M, Pittock SJ, Kantarci OH, et al. Critical spinal cord lesions associate with secondary progressive motor impairment in longstanding MS: A populationbased casecontrol study. Mult Scler J. 2021 Apr 1;27(5):667-73.

https://doi.org/10.1177/1352458520929192

PMid:32552535 PMCid:PMC10477711

Mahmoudi F, McCarthy M, Nelson F. Functional MRI and cognition in multiple sclerosis-Where are we now? J Neuroimaging. 2025;35(1):e13252.

https://doi.org/10.1111/jon.13252

PMid:39636088 PMCid:PMC11619555

AlArfaj HK, AlSharydah AM, AlSuhaibani SS, Alaqeel S, Yousry T. TaskBased and RestingState Functional MRI in Observing Eloquent Cerebral Areas Personalized for Epilepsy and Surgical Oncology Patients: A Review of the Current Evidence. J Pers Med. 2023 Feb;13(2):370.

https://doi.org/10.3390/jpm13020370

PMid:36836604 PMCid:PMC9964201

Kumar VA, Heiba IM, Prabhu SS, Chen MM, Colen RR, Young AL, et al. The role of restingstate functional MRI for clinical preoperative language mapping. Cancer Imaging. 2020 Dec;20(1):47.

https://doi.org/10.1186/s40644-020-00327-w

PMid:32653026 PMCid:PMC7353792

Gajofatto A, Cardobi N, Gobbin F, Calabrese M, Turatti M, Benedetti MD. Restingstate functional connectivity in multiple sclerosis patients receiving nabiximols for spasticity. BMC Neurol. 2023 Mar 29;23(1):128.

https://doi.org/10.1186/s12883-023-03171-0

PMid:36991352 PMCid:PMC10052832

Schoonheim MM, Meijer KA, Geurts JJG. Network collapse and cognitive impairment in multiple sclerosis. Front Neurol. 2015;6:82.

https://doi.org/10.3389/fneur.2015.00082

PMid:25926813 PMCid:PMC4396388

Rocca MA, Valsasina P, Leavitt VM, Rodegher M, Radaelli M, Riccitelli GC, et al. Functional network connectivity abnormalities in multiple sclerosis: Correlations with disability and cognitive impairment. Mult Scler J. 2018 Apr 1;24(4):459-71.

https://doi.org/10.1177/1352458517699875

PMid:28294693

DeLuca J. Fatigue in multiple sclerosis: can we measure it and can we treat it? J Neurol. 2024 Sep 1;271(9):6388-92.

https://doi.org/10.1007/s00415-024-12524-9

PMid:38967652 PMCid:PMC11377630

Bisecco A, Nardo FD, Docimo R, Caiazzo G, d'Ambrosio A, Bonavita S, et al. Fatigue in multiple sclerosis: The contribution of restingstate functional connectivity reorganization. Mult Scler J. 2018 Nov 1;24(13):1696-705.

https://doi.org/10.1177/1352458517730932

PMid:28911257

Tijhuis FB, Broeders TAA, Santos FAN, Schoonheim MM, Killestein J, Leurs CE, et al. Dynamic functional connectivity as a neural correlate of fatigue in multiple sclerosis. NeuroImage Clin. 2021;29:102556.

https://doi.org/10.1016/j.nicl.2020.102556

PMid:33472144 PMCid:PMC7815811

Van Schependom J, Gielen J, Laton J, D'hooghe MB, De Keyser J, Nagels G. Graph theoretical analysis indicates cognitive impairment in MS stems from neural disconnection. NeuroImage Clin. 2014;4:403-10.

https://doi.org/10.1016/j.nicl.2014.01.012

PMid:24567912 PMCid:PMC3930112

Kenyon KH, Boonstra F, Noffs G, Butzkueven H, Vogel AP, Kolbe S, et al. An Update on the Measurement of Motor Cerebellar Dysfunction in Multiple Sclerosis. The Cerebellum. 2023 Aug 1;22(4):761-75.

https://doi.org/10.1007/s12311-022-01435-y

PMid:35761144 PMCid:PMC9244122

Szilasiová J, Rosenberger J, Mikula P, Vitková M, Fedičová M, Gdovinová Z. Cognitive EventRelated Potentials-The P300 Wave Is a Prognostic Factor of LongTerm Disability Progression in Patients With Multiple Sclerosis. J Clin Neurophysiol. 2022 Jul;39(5):390-6.

https://doi.org/10.1097/WNP.0000000000000788

PMid:33031128

Ferreira JA, Pinto N, Maricoto T, Pato MV. Relationship between eventrelated potentials and cognitive dysfunction in multiple sclerosis: A systematic review. Clin Neurophysiol. 2024 Jul;163:174-84.

https://doi.org/10.1016/j.clinph.2024.04.024

PMid:38759513

Hardmeier M, Schlaeger R, Lascano AM, Toffolet L, Schindler C, Gobbi C, et al. Prognostic biomarkers in primary progressive multiple sclerosis: Validating and scrutinizing multimodal evoked potentials. Clin Neurophysiol. 2022 May;137:152-8.

https://doi.org/10.1016/j.clinph.2022.02.019

PMid:35316624

VidalJordana A, Rovira A, Arrambide G, OteroRomero S, Río J, Comabella M, et al. Optic Nerve Topography in Multiple Sclerosis Diagnosis. Neurology. 2021 Jan 26;96(4):e482-90.

https://doi.org/10.1212/WNL.0000000000011339

PMid:33328323 PMCid:PMC7905792

Chrysanthakopoulou DC, Koutsojannis C. Machine Learning Algorithms Introduce Evoked Potentials As Alternative Biomarkers for the Expanded Disability Status Scale Prognosis of Multiple Sclerosis Patients. Cureus. 17(3):e80335.

Paolicelli D, Manni A, Iaffaldano A, Tancredi G, Ricci K, Gentile E, et al. Magnetoencephalography and HighDensity Electroencephalography Study of Acoustic Event Related Potentials in Early Stage of Multiple Sclerosis: A Pilot Study on Cognitive Impairment and Fatigue. Brain Sci. 2021 Apr 9;11(4):481.

https://doi.org/10.3390/brainsci11040481

PMid:33918861 PMCid:PMC8069556

Khoury SJ. Progressive Multiple Sclerosis. Ann Neurol. 2020 Sep;88(3):436-7.

https://doi.org/10.1002/ana.25802

PMid:32628321

Katsarogiannis E, Axelson H, Berntsson S, Rothkegel H, Burman J. Evoked potentials after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult Scler Relat Disord. 2024 Mar;83:105447.

https://doi.org/10.1016/j.msard.2024.105447

PMid:38242050

Hernandez CI, Kargarnovin S, Hejazi S, Karwowski W. Examining electroencephalogram signatures of people with multiple sclerosis using a nonlinear dynamics approach. a systematic review and bibliographic analysis Front Comput Neurosci [Internet]: 2023 Jun 29 [cited 2025 May 14]; Available from: https://www.frontiersin.org/journals/computationalneuroscience/articles/10.3389/fncom.2023.1207067/full

https://doi.org/10.3389/fncom.2023.1207067

PMid:37457899 PMCid:PMC10344458

Puce L, Currà A, Marinelli L, Mori L, Capello E, Di Giovanni R, et al. Spasticity, spastic dystonia, and static stretch reflex in hypertonic muscles of patients with multiple sclerosis. Clin Neurophysiol Pract. 2021;6:194-202.

https://doi.org/10.1016/j.cnp.2021.05.002

PMid:34278056 PMCid:PMC8263531

Pullman SL, Goodin DS, Marquinez AI, Tabbal S, Rubin M. Clinical utility of surface EMG [RETIRED]: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2000 Jul 25;55(2):171-7.

https://doi.org/10.1212/WNL.55.2.171

PMid:10908886

RADECKA A, KNYSZYŃSKA A, LUBKOWSKA A. Assessment of muscle fatigue in multiple sclerosis patients in electromyographic examinations. Eur J Phys Rehabil Med. 2023 Mar 9;59(2):152-63.

https://doi.org/10.23736/S1973-9087.23.07667-0

PMid:36892519 PMCid:PMC10171362

Boudarham J, Pradon D, Roche N, Bensmail D, Zory R. Effects of a dynamicanklefoot orthosis (Liberté®) on kinematics and electromyographic activity during gait in hemiplegic patients with spastic foot equinus. NeuroRehabilitation. 2014;35(3):369-79.

https://doi.org/10.3233/NRE-141128

PMid:25227539

Campanini I, DisselhorstKlug C, Rymer WZ, Merletti R. Surface EMG in Clinical Assessment and Neurorehabilitation. Barriers Limiting Its Use: Front Neurol [Internet] 2020 Sep 2 [cited 2025 May 14]; Available from: https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2020.00934/full

https://doi.org/10.3389/fneur.2020.00934

PMid:32982942 PMCid:PMC7492208

Eken MM, Richards R, Beckerman H, van der Krogt M, Gerrits K, Rietberg M, et al. Quantifying muscle fatigue during walking in people with multiple sclerosis. Clin Biomech Bristol Avon. 2020 Feb;72:94-101.

https://doi.org/10.1016/j.clinbiomech.2019.11.020

PMid:31862607

Janshen L, Santuz A, Ekizos A, Arampatzis A. Fuzziness of muscle synergies in patients with multiple sclerosis indicates increased robustness of motor control during walking. Sci Rep. 2020 Apr 29;10(1):7249.

https://doi.org/10.1038/s41598-020-63788-w

PMid:32350313 PMCid:PMC7190675

Gentili PL. The Fuzziness of the Molecular World and Its Perspectives. Molecules. 2018 Aug;23(8):2074.

https://doi.org/10.3390/molecules23082074

PMid:30126225 PMCid:PMC6222855

Abreu R, Soares JF, Lima AC, Sousa L, Batista S, CasteloBranco M, et al. Optimizing EEG Source Reconstruction with Concurrent fMRIDerived Spatial Priors. Brain Topogr. 2022 May 1;35(3):282-301.

https://doi.org/10.1007/s10548-022-00891-3

PMid:35142957 PMCid:PMC9098592

Van Der Meer JN, Pampel A, Van Someren EJW, Ramautar JR, Van Der Werf YD, GomezHerrero G, et al. Carbonwire loop based artifact correction outperforms postprocessing EEG/fMRI corrections-A validation of a realtime simultaneous EEG/fMRI correction method. NeuroImage. 2016 Jan;125:880-94.

https://doi.org/10.1016/j.neuroimage.2015.10.064

PMid:26505301

Lei X, Xu P, Luo C, Zhao J, Zhou D, Yao D. fMRI functional networks for EEG source imaging. Hum Brain Mapp. 2010 Sep 2;32(7):1141-60.

https://doi.org/10.1002/hbm.21098

PMid:20814964 PMCid:PMC6869924

Tomasevic L, Zito G, Pasqualetti P, Filippi M, Landi D, Ghazaryan A, et al. Corticomuscular coherence as an index of fatigue in multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2013 Mar;19(3):334-43.

https://doi.org/10.1177/1352458512452921

PMid:22760098

Baldini S, Morelli ME, Sartori A, Pasquin F, Dinoto A, Bratina A, et al. Microstates in multiple sclerosis: an electrophysiological signature of altered largescale networks functioning? Brain Commun. 2022 Nov 23;5(1):fcac255.

https://doi.org/10.1093/braincomms/fcac255

PMid:36601622 PMCid:PMC9806850

Shin W, Krishnan B, Nemani A, Ontaneda D, Lowe MJ. Investigation of neuro-vascular reactivity on fMRI study during visual activation in people with multiple sclerosis using EEG and hypercapnia challenge. Medical Physics. 2025 Jun;52(6):508190.

https://doi.org/10.1002/mp.17772

PMid:40116356 PMCid:PMC12149704

Tramonti C, Imperatori LS, Fanciullacci C, Lamola G, Lettieri G, Bernardi G, et al. Predictive value of electroencephalography connectivity measures for motor training outcome in multiple sclerosis. an observational longitudinal study: Eur J Phys Rehabil Med [Internet] 2020 Jan [cited 2025 May 14]; Available from: https://www.minervamedica.it/index2.php?show=R33Y2019N06A0743

Leodori G, Mancuso M, Maccarrone D, Tartaglia M, Ianniello A, Certo F, et al. Neural bases of motor fatigue in multiple sclerosis: A multimodal approach using neuromuscular assessment and TMSEEG. Neurobiol Dis. 2023 May;180:106073.

https://doi.org/10.1016/j.nbd.2023.106073

PMid:36906073

Leodori G, Mancuso M, Maccarrone D, Tartaglia M, Ianniello A, Certo F, et al. Insight into motor fatigue mechanisms in natalizumab treated multiple sclerosis patients with wearing off. Sci Rep. 2024 Jul 26;14(1):17654.

https://doi.org/10.1038/s41598-024-68322-w

PMid:39085330 PMCid:PMC11291752

Rocca MA, Romanò F, Tedone N, Filippi M. Advanced neuroimaging techniques to explore the effects of motor and cognitive rehabilitation in multiple sclerosis. J Neurol. 2024 Jul;271(7):3806-48.

https://doi.org/10.1007/s00415-024-12395-0

PMid:38691168

Bardel B, Ayache SS, Lefaucheur JP. The contribution of EEG to assess and treat motor disorders in multiple sclerosis. Clin Neurophysiol. 2024 Jun;162:174-200.

https://doi.org/10.1016/j.clinph.2024.03.024

PMid:38643612

Wattjes MP, Ciccarelli O, Reich DS, Banwell B, De Stefano N, Enzinger C, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021 Aug;20(8):653-70.

https://doi.org/10.1016/S1474-4422(21)00095-8

PMid:34139157

Balachandrasekaran A, Cohen AL, Afacan O, Warfield SK, Gholipour A. Reducing the Effects of Motion Artifacts in fMRI: A Structured Matrix Completion Approach. IEEE Trans Med Imaging. 2022 Jan;41(1):172-85.

https://doi.org/10.1109/TMI.2021.3107829

PMid:34432631 PMCid:PMC8934405

Brambilla C, Pirovano I, Mira RM, Rizzo G, Scano A, Mastropietro A. Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. Sensors. 2021 Jan;21(21):7014.

https://doi.org/10.3390/s21217014

PMid:34770320 PMCid:PMC8588321

Voets NL, Ashtari M, Beckmann CF, Benjamin CF, Benzinger T, Binder JR, et al. Consensus recommendations for clinical functional MRI applied to language mapping. Aperture Neuro [Internet]: 2025 Jan 23 [cited 2025 May 14]; Available from: https://apertureneuro.org/

https://doi.org/10.52294/001c.128149

Cruciani A, Santoro F, Pozzilli V, Todisco A, Pilato F, Motolese F, et al. Neurophysiological methods for assessing and treating cognitive impairment in multiple sclerosis: A scoping review of the literature. Mult Scler Relat Disord. 2024 Nov;91:105892.

https://doi.org/10.1016/j.msard.2024.105892

PMid:39299184

Manca A, Cereatti A, BarOn L, Botter A, Della Croce U, Knaflitz M, et al. A Survey on the Use and Barriers of Surface Electromyography in Neurorehabilitation. Front Neurol. 2020 Oct 2;11:573616.

https://doi.org/10.3389/fneur.2020.573616

PMid:33123079 PMCid:PMC7566898

Tomassini V, Sinclair A, Sawlani V, Overell J, Pearson OR, Hall J, et al. Diagnosis and management of multiple sclerosis: MRI in clinical practice. J Neurol. 2020 Oct;267(10):2917-25.

https://doi.org/10.1007/s00415-020-09930-0

PMid:32472179 PMCid:PMC7501096

Collorone S, Coll L, Lorenzi M, Lladó X, SastreGarriga J, Tintoré M, et al. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult Scler J. 2024 Jun;30(7):767-84.

https://doi.org/10.1177/13524585241249422

PMid:38738527

Zakeri H, Radmehr M, Khademi F, Pedramfard P, Montazeri L, Ghanaatpisheh M, et al. Utilizing Artificial Intelligence for the Diagnosis, Assessment, and Management of Chronic Pain. J Biomed Phys Eng [Internet]: 2023 [cited 2024 Sep 23]; Available from: https://jbpe.sums.ac.ir/article_49736.html

Denissen S, Chén OY, De Mey J, De Vos M, Van Schependom J, Sima DM, et al. Towards Multimodal Machine Learning Prediction of Individual Cognitive Evolution in Multiple Sclerosis. J Pers Med. 2021 Dec;11(12):1349.

https://doi.org/10.3390/jpm11121349

PMid:34945821 PMCid:PMC8707909

Ham AS, Hacker CT, Guo J, SorbyAdams A, Kimberly WT, Mateen FJ. Feasibility and tolerability of portable, lowfield brain MRI for patients with multiple sclerosis. Mult Scler Relat Disord. 2024 May;85:105515.

https://doi.org/10.1016/j.msard.2024.105515

PMid:38489947

Mahmood M, Kwon YT, Kim YS, Kim J, Yeo WH. Smart and Connected Physiological Monitoring Enabled by Stretchable Bioelectronics and DeepLearning Algorithm. In: 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) [Internet]; Available from: https://ieeexplore.ieee.org/document/9159267/

https://doi.org/10.1109/ECTC32862.2020.00159

PMid:33342736

Kimberly WT, SorbyAdams AJ, Webb AG, Wu EX, Beekman R, Bowry R, et al. Brain imaging with portable lowfield MRI. Nat Rev Bioeng. 2023 Jul 17;1(9):617-30.

https://doi.org/10.1038/s44222-023-00086-w

PMid:37705717 PMCid:PMC10497072

article/128149consensusrecommendationsforclinicalfunctionalmriappliedtolanguagemapping

Cruciani A, Santoro F, Pozzilli V, Todisco A, Pilato F, Motolese F, et al. Neurophysiological methods for assessing and treating cognitive impairment in multiple sclerosis: A scoping review of the literature. Mult Scler Relat Disord. 2024 Nov;91:105892.

https://doi.org/10.1016/j.msard.2024.105892

PMid:39299184

Manca A, Cereatti A, BarOn L, Botter A, Della Croce U, Knaflitz M, et al. A Survey on the Use and Barriers of Surface Electromyography in Neurorehabilitation. Front Neurol. 2020 Oct 2;11:573616.

https://doi.org/10.3389/fneur.2020.573616

PMid:33123079 PMCid:PMC7566898

Tomassini V, Sinclair A, Sawlani V, Overell J, Pearson OR, Hall J, et al. Diagnosis and management of multiple sclerosis: MRI in clinical practice. J Neurol. 2020 Oct;267(10):2917-25.

https://doi.org/10.1007/s00415-020-09930-0

PMid:32472179 PMCid:PMC7501096

Collorone S, Coll L, Lorenzi M, Lladó X, SastreGarriga J, Tintoré M, et al. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult Scler J. 2024 Jun;30(7):767-84.

https://doi.org/10.1177/13524585241249422

PMid:38738527

Zakeri H, Radmehr M, Khademi F, Pedramfard P, Montazeri L, Ghanaatpisheh M, et al. Utilizing Artificial Intelligence for the Diagnosis, Assessment, and Management of Chronic Pain. J Biomed Phys Eng [Internet]: 2023 [cited 2024 Sep 23]; Available from: https://jbpe.sums.ac.ir/article_49736.html

Denissen S, Chén OY, De Mey J, De Vos M, Van Schependom J, Sima DM, et al. Towards Multimodal Machine Learning Prediction of Individual Cognitive Evolution in Multiple Sclerosis. J Pers Med. 2021 Dec;11(12):1349.

https://doi.org/10.3390/jpm11121349

PMid:34945821 PMCid:PMC8707909

Ham AS, Hacker CT, Guo J, SorbyAdams A, Kimberly WT, Mateen FJ. Feasibility and tolerability of portable, lowfield brain MRI for patients with multiple sclerosis. Mult Scler Relat Disord. 2024 May;85:105515.

https://doi.org/10.1016/j.msard.2024.105515

PMid:38489947

Mahmood M, Kwon YT, Kim YS, Kim J, Yeo WH. Smart and Connected Physiological Monitoring Enabled by Stretchable Bioelectronics and DeepLearning Algorithm. In: 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) [Internet]; Available from: https://ieeexplore.ieee.org/document/9159267/

https://doi.org/10.1109/ECTC32862.2020.00159

PMid:33342736

Kimberly WT, SorbyAdams AJ, Webb AG, Wu EX, Beekman R, Bowry R, et al. Brain imaging with portable lowfield MRI. Nat Rev Bioeng. 2023 Jul 17;1(9):617-30.

https://doi.org/10.1038/s44222-023-00086-w

PMid:37705717 PMCid:PMC10497072

Downloads

Published

2025-10-11

How to Cite

Salemi, M. H. (2025). Multimodal Neuroimaging and Electrophysiological Markers in Multiple Sclerosis: An Integrative Review of fMRI, EEG, and EMG Approaches. Galen Medical Journal, 14, e3878. Retrieved from https://journals.salviapub.com/index.php/gmj/article/view/3878

Issue

Section

Review Article