Multimodal Neuroimaging and Electrophysiological Markers in Multiple Sclerosis: An Integrative Review of fMRI, EEG, and EMG Approaches
Keywords:
Multiple Sclerosis; Functional MRI; Electroencephalography; ElectromyographyAbstract
.Multiple sclerosis (MS) is a chronic neurological disease marked by demyelination, neurodegeneration, and widespread network dysfunction. While conventional MRI remains central to diagnosis, advanced techniques such as functional MRI (fMRI), electroencephalography (EEG), and electromyography (EMG) are increasingly recognized for their ability to capture dynamic functional changes that underlie clinical symptoms. This review explores the individual and combined applications of fMRI, EEG, and EMG in MS, emphasizing recent clinical findings from 2019 to 2024. fMRI provides high-resolution mapping of brain activation and connectivity, revealing compensatory plasticity in early stages and connectivity breakdowns associated with progression. EEG offers real-time monitoring of cortical activity, detecting spectral slowing, network reorganization, and neurophysiological correlates of fatigue and cognitive decline. EMG quantifies neuromuscular output, identifying spasticity, motor unit loss, and gait disturbances with high sensitivity. Integration of these modalities enhances spatial and temporal resolution; however, challenges such as data standardization and interpretive variability must be addressed to ensure robust biomarker development. Advances in machine learning, portable EEG/EMG systems, and big-data infrastructure are driving the translation of multimodal monitoring into clinical practice. Real-time assessments and individualized biomarker profiles could enable earlier diagnosis, more accurate prognosis, and personalized rehabilitation and therapy strategies. Although technical, interpretive, and standardization challenges remain, the convergence of fMRI, EEG, and EMG offers a promising path toward precision medicine in MS. Multimodal approaches not only deepen understanding of MS pathophysiology but also hold tangible potential to transform disease monitoring, treatment decision-making, and patient outcomes.
References
Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018 Jan 11;378(2):169-80.
https://doi.org/10.1056/NEJMra1401483
PMid:29320652 PMCid:PMC6942519
Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis: Lessons learned about the human brain. NeuroImage. 2019 Apr 15;190:32-45.
https://doi.org/10.1016/j.neuroimage.2017.09.021
PMid:28917696
Statsenko Y, Smetanina D, Arora T, Östlundh L, Habuza T, Simiyu GL, et al. Multimodal diagnostics in multiple sclerosis: predicting disability and conversion from relapsingremitting to secondary progressive disease course - protocol for systematic review and metaanalysis. BMJ Open. 2023 Jul 14;13(7):e068608.
https://doi.org/10.1136/bmjopen-2022-068608
PMid:37451729 PMCid:PMC10351237
Cordani C, Meani A, Esposito F, Valsasina P, Colombo B, Pagani E, et al. Imaging correlates of hand motor performance in multiple sclerosis: A multiparametric structural and functional MRI study. Mult Scler J. 2020 Feb 1;26(2):233-44.
https://doi.org/10.1177/1352458518822145
PMid:30657011
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. GraphBased Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci. 2023 Feb;13(2):246.
https://doi.org/10.3390/brainsci13020246
PMid:36831789 PMCid:PMC9953947
Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task and restingstate fMRI studies in multiple sclerosis: From regions to systems and timevarying analysis Current status and future perspective. NeuroImage Clin. 2022 Jun 6;35:103076.
https://doi.org/10.1016/j.nicl.2022.103076
PMid:35691253 PMCid:PMC9194954
Pantano P, Petsas N, Tona F, Sbardella E. The Role of fMRI to Assess Plasticity of the Motor System in MS. Front Neurol. 2015 Mar 16;6:55.
https://doi.org/10.3389/fneur.2015.00055
PMid:25852634 PMCid:PMC4360702
Keune PM, Hansen S, Weber E, Zapf F, Habich J, Muenssinger J, et al. Exploring restingstate EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis. Clin Neurophysiol. 2017 Sep;128(9):1746-54.
https://doi.org/10.1016/j.clinph.2017.06.253
PMid:28772244
Zinn MA, Zinn ML, Valencia I, Jason LA, Montoya JG. Cortical hypoactivation during resting EEG suggests central nervous system pathology in patients with chronic fatigue syndrome. Biol Psychol. 2018 Jul;136:87-99.
https://doi.org/10.1016/j.biopsycho.2018.05.016
PMid:29802861 PMCid:PMC6064389
Knežević S. BRAINCOMPUTER INTERFACES IN NEUROREHABILITATION FOR CENTRAL NERVOUS SYSTEM DISEASES APPLICATIONS IN STROKE, MULTIPLE SCLEROSIS AND PARKINSON'S DISEASE. Sanamed [Internet]: 2025 Feb 16 [cited 2025 May 13] ; Available from: https://aseestant.ceon.rs/index.php/sanamed/article/view/54685
Grippe T, Cunha NSC da, Brandão PR de P, Fernandez RNM, Cardoso FEC. How can neurophysiological studies help with movement disorders characterization in clinical practice A review. Arq Neuropsiquiatr. 2020 May 29;78:512-22.
https://doi.org/10.1590/0004-282x20190195
PMid:32901697
Fernández V. The Use of MotorEvoked Potentials in Clinical Trials in Multiple Sclerosis. J Clin Neurophysiol. 2021 May;38(3):166-70.
https://doi.org/10.1097/WNP.0000000000000734
PMid:33958566
Leocani L, Guerrieri S, Comi G. Visual Evoked Potentials as a Biomarker in Multiple Sclerosis and Associated Optic Neuritis. J Neuroophthalmol. 2018 Sep;38(3):350.
https://doi.org/10.1097/WNO.0000000000000704
PMid:30106802
Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler Houndmills Basingstoke Engl. 2017 Sep;23(10):1309-19.
https://doi.org/10.1177/1352458517707265
PMid:28480798 PMCid:PMC5564950
Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, Stefano ND, et al. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. Lancet Reg Health. Eur [Internet] 2024 Sep 1: [cited 2025 May 14]; Available from: https://www.thelancet.com/journals/lanepe/article/PIIS26667762(24)001455/fulltext
Salim AA, Ali SH, Hussain AM, Ibrahim WN. Electroencephalographic evidence of gray matter lesions among multiple sclerosis patients. Medicine (Baltimore). 2021 Aug 20;100(33):e27001.
https://doi.org/10.1097/MD.0000000000027001
PMid:34414988 PMCid:PMC8376360
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. Wires Mech Dis. 2023;15(1):e1583.
https://doi.org/10.1002/wsbm.1583
PMid:35948371 PMCid:PMC9839517
DalBianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord. 2024 Aug 1;17:17562864241306684.
https://doi.org/10.1177/17562864241306684
PMid:39711984 PMCid:PMC11660293
Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurol. 2019 Dec 1;76(12):1474-83.
https://doi.org/10.1001/jamaneurol.2019.2399
PMid:31403674 PMCid:PMC6692692
Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. The American journal of pathology. 2000 Jul 1;157(1):26776.
https://doi.org/10.1016/S0002-9440(10)64537-3
PMid:10880396
Lassmann H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front Immunol. 2018;9:3116.
https://doi.org/10.3389/fimmu.2018.03116
PMid:30687321 PMCid:PMC6335289
Jäkel S, Agirre E, Mendanha Falcão A, van Bruggen D, Lee KW, Knuesel I, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019 Feb;566(7745):543-7.
https://doi.org/10.1038/s41586-019-0903-2
PMid:30747918 PMCid:PMC6544546
Harlow DE, Honce JM, Miravalle AA. Remyelination Therapy in Multiple Sclerosis. Front Neurol. 2015 Dec 10;6:257.
https://doi.org/10.3389/fneur.2015.00257
PMid:26696956 PMCid:PMC4674562
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 Feb 1;17(2):162-73.
https://doi.org/10.1016/S1474-4422(17)30470-2
PMid:29275977
Scalfari A, Romualdi C, Nicholas RS, Mattoscio M, Magliozzi R, Morra A, et al. The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology. 2018 Jun 12;90(24):e2107-18.
https://doi.org/10.1212/WNL.0000000000005685
PMid:29769373
Griffiths L, Reynolds R, Evans R, Bevan RJ, Rees MI, Gveric D, et al. Substantial subpial cortical demyelination in progressive multiple sclerosis: have we underestimated the extent of cortical pathology? Neuroimmunol Neuroinflammation. 2020 Mar 21;7(1):51-67.
https://doi.org/10.20517/2347-8659.2019.21
Sechi E, Messina S, Keegan BM, Buciuc M, Pittock SJ, Kantarci OH, et al. Critical spinal cord lesions associate with secondary progressive motor impairment in longstanding MS: A populationbased casecontrol study. Mult Scler J. 2021 Apr 1;27(5):667-73.
https://doi.org/10.1177/1352458520929192
PMid:32552535 PMCid:PMC10477711
Mahmoudi F, McCarthy M, Nelson F. Functional MRI and cognition in multiple sclerosis-Where are we now? J Neuroimaging. 2025;35(1):e13252.
https://doi.org/10.1111/jon.13252
PMid:39636088 PMCid:PMC11619555
AlArfaj HK, AlSharydah AM, AlSuhaibani SS, Alaqeel S, Yousry T. TaskBased and RestingState Functional MRI in Observing Eloquent Cerebral Areas Personalized for Epilepsy and Surgical Oncology Patients: A Review of the Current Evidence. J Pers Med. 2023 Feb;13(2):370.
https://doi.org/10.3390/jpm13020370
PMid:36836604 PMCid:PMC9964201
Kumar VA, Heiba IM, Prabhu SS, Chen MM, Colen RR, Young AL, et al. The role of restingstate functional MRI for clinical preoperative language mapping. Cancer Imaging. 2020 Dec;20(1):47.
https://doi.org/10.1186/s40644-020-00327-w
PMid:32653026 PMCid:PMC7353792
Gajofatto A, Cardobi N, Gobbin F, Calabrese M, Turatti M, Benedetti MD. Restingstate functional connectivity in multiple sclerosis patients receiving nabiximols for spasticity. BMC Neurol. 2023 Mar 29;23(1):128.
https://doi.org/10.1186/s12883-023-03171-0
PMid:36991352 PMCid:PMC10052832
Schoonheim MM, Meijer KA, Geurts JJG. Network collapse and cognitive impairment in multiple sclerosis. Front Neurol. 2015;6:82.
https://doi.org/10.3389/fneur.2015.00082
PMid:25926813 PMCid:PMC4396388
Rocca MA, Valsasina P, Leavitt VM, Rodegher M, Radaelli M, Riccitelli GC, et al. Functional network connectivity abnormalities in multiple sclerosis: Correlations with disability and cognitive impairment. Mult Scler J. 2018 Apr 1;24(4):459-71.
https://doi.org/10.1177/1352458517699875
PMid:28294693
DeLuca J. Fatigue in multiple sclerosis: can we measure it and can we treat it? J Neurol. 2024 Sep 1;271(9):6388-92.
https://doi.org/10.1007/s00415-024-12524-9
PMid:38967652 PMCid:PMC11377630
Bisecco A, Nardo FD, Docimo R, Caiazzo G, d'Ambrosio A, Bonavita S, et al. Fatigue in multiple sclerosis: The contribution of restingstate functional connectivity reorganization. Mult Scler J. 2018 Nov 1;24(13):1696-705.
https://doi.org/10.1177/1352458517730932
PMid:28911257
Tijhuis FB, Broeders TAA, Santos FAN, Schoonheim MM, Killestein J, Leurs CE, et al. Dynamic functional connectivity as a neural correlate of fatigue in multiple sclerosis. NeuroImage Clin. 2021;29:102556.
https://doi.org/10.1016/j.nicl.2020.102556
PMid:33472144 PMCid:PMC7815811
Van Schependom J, Gielen J, Laton J, D'hooghe MB, De Keyser J, Nagels G. Graph theoretical analysis indicates cognitive impairment in MS stems from neural disconnection. NeuroImage Clin. 2014;4:403-10.
https://doi.org/10.1016/j.nicl.2014.01.012
PMid:24567912 PMCid:PMC3930112
Kenyon KH, Boonstra F, Noffs G, Butzkueven H, Vogel AP, Kolbe S, et al. An Update on the Measurement of Motor Cerebellar Dysfunction in Multiple Sclerosis. The Cerebellum. 2023 Aug 1;22(4):761-75.
https://doi.org/10.1007/s12311-022-01435-y
PMid:35761144 PMCid:PMC9244122
Szilasiová J, Rosenberger J, Mikula P, Vitková M, Fedičová M, Gdovinová Z. Cognitive EventRelated Potentials-The P300 Wave Is a Prognostic Factor of LongTerm Disability Progression in Patients With Multiple Sclerosis. J Clin Neurophysiol. 2022 Jul;39(5):390-6.
https://doi.org/10.1097/WNP.0000000000000788
PMid:33031128
Ferreira JA, Pinto N, Maricoto T, Pato MV. Relationship between eventrelated potentials and cognitive dysfunction in multiple sclerosis: A systematic review. Clin Neurophysiol. 2024 Jul;163:174-84.
https://doi.org/10.1016/j.clinph.2024.04.024
PMid:38759513
Hardmeier M, Schlaeger R, Lascano AM, Toffolet L, Schindler C, Gobbi C, et al. Prognostic biomarkers in primary progressive multiple sclerosis: Validating and scrutinizing multimodal evoked potentials. Clin Neurophysiol. 2022 May;137:152-8.
https://doi.org/10.1016/j.clinph.2022.02.019
PMid:35316624
VidalJordana A, Rovira A, Arrambide G, OteroRomero S, Río J, Comabella M, et al. Optic Nerve Topography in Multiple Sclerosis Diagnosis. Neurology. 2021 Jan 26;96(4):e482-90.
https://doi.org/10.1212/WNL.0000000000011339
PMid:33328323 PMCid:PMC7905792
Chrysanthakopoulou DC, Koutsojannis C. Machine Learning Algorithms Introduce Evoked Potentials As Alternative Biomarkers for the Expanded Disability Status Scale Prognosis of Multiple Sclerosis Patients. Cureus. 17(3):e80335.
Paolicelli D, Manni A, Iaffaldano A, Tancredi G, Ricci K, Gentile E, et al. Magnetoencephalography and HighDensity Electroencephalography Study of Acoustic Event Related Potentials in Early Stage of Multiple Sclerosis: A Pilot Study on Cognitive Impairment and Fatigue. Brain Sci. 2021 Apr 9;11(4):481.
https://doi.org/10.3390/brainsci11040481
PMid:33918861 PMCid:PMC8069556
Khoury SJ. Progressive Multiple Sclerosis. Ann Neurol. 2020 Sep;88(3):436-7.
https://doi.org/10.1002/ana.25802
PMid:32628321
Katsarogiannis E, Axelson H, Berntsson S, Rothkegel H, Burman J. Evoked potentials after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult Scler Relat Disord. 2024 Mar;83:105447.
https://doi.org/10.1016/j.msard.2024.105447
PMid:38242050
Hernandez CI, Kargarnovin S, Hejazi S, Karwowski W. Examining electroencephalogram signatures of people with multiple sclerosis using a nonlinear dynamics approach. a systematic review and bibliographic analysis Front Comput Neurosci [Internet]: 2023 Jun 29 [cited 2025 May 14]; Available from: https://www.frontiersin.org/journals/computationalneuroscience/articles/10.3389/fncom.2023.1207067/full
https://doi.org/10.3389/fncom.2023.1207067
PMid:37457899 PMCid:PMC10344458
Puce L, Currà A, Marinelli L, Mori L, Capello E, Di Giovanni R, et al. Spasticity, spastic dystonia, and static stretch reflex in hypertonic muscles of patients with multiple sclerosis. Clin Neurophysiol Pract. 2021;6:194-202.
https://doi.org/10.1016/j.cnp.2021.05.002
PMid:34278056 PMCid:PMC8263531
Pullman SL, Goodin DS, Marquinez AI, Tabbal S, Rubin M. Clinical utility of surface EMG [RETIRED]: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2000 Jul 25;55(2):171-7.
https://doi.org/10.1212/WNL.55.2.171
PMid:10908886
RADECKA A, KNYSZYŃSKA A, LUBKOWSKA A. Assessment of muscle fatigue in multiple sclerosis patients in electromyographic examinations. Eur J Phys Rehabil Med. 2023 Mar 9;59(2):152-63.
https://doi.org/10.23736/S1973-9087.23.07667-0
PMid:36892519 PMCid:PMC10171362
Boudarham J, Pradon D, Roche N, Bensmail D, Zory R. Effects of a dynamicanklefoot orthosis (Liberté®) on kinematics and electromyographic activity during gait in hemiplegic patients with spastic foot equinus. NeuroRehabilitation. 2014;35(3):369-79.
https://doi.org/10.3233/NRE-141128
PMid:25227539
Campanini I, DisselhorstKlug C, Rymer WZ, Merletti R. Surface EMG in Clinical Assessment and Neurorehabilitation. Barriers Limiting Its Use: Front Neurol [Internet] 2020 Sep 2 [cited 2025 May 14]; Available from: https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2020.00934/full
https://doi.org/10.3389/fneur.2020.00934
PMid:32982942 PMCid:PMC7492208
Eken MM, Richards R, Beckerman H, van der Krogt M, Gerrits K, Rietberg M, et al. Quantifying muscle fatigue during walking in people with multiple sclerosis. Clin Biomech Bristol Avon. 2020 Feb;72:94-101.
https://doi.org/10.1016/j.clinbiomech.2019.11.020
PMid:31862607
Janshen L, Santuz A, Ekizos A, Arampatzis A. Fuzziness of muscle synergies in patients with multiple sclerosis indicates increased robustness of motor control during walking. Sci Rep. 2020 Apr 29;10(1):7249.
https://doi.org/10.1038/s41598-020-63788-w
PMid:32350313 PMCid:PMC7190675
Gentili PL. The Fuzziness of the Molecular World and Its Perspectives. Molecules. 2018 Aug;23(8):2074.
https://doi.org/10.3390/molecules23082074
PMid:30126225 PMCid:PMC6222855
Abreu R, Soares JF, Lima AC, Sousa L, Batista S, CasteloBranco M, et al. Optimizing EEG Source Reconstruction with Concurrent fMRIDerived Spatial Priors. Brain Topogr. 2022 May 1;35(3):282-301.
https://doi.org/10.1007/s10548-022-00891-3
PMid:35142957 PMCid:PMC9098592
Van Der Meer JN, Pampel A, Van Someren EJW, Ramautar JR, Van Der Werf YD, GomezHerrero G, et al. Carbonwire loop based artifact correction outperforms postprocessing EEG/fMRI corrections-A validation of a realtime simultaneous EEG/fMRI correction method. NeuroImage. 2016 Jan;125:880-94.
https://doi.org/10.1016/j.neuroimage.2015.10.064
PMid:26505301
Lei X, Xu P, Luo C, Zhao J, Zhou D, Yao D. fMRI functional networks for EEG source imaging. Hum Brain Mapp. 2010 Sep 2;32(7):1141-60.
https://doi.org/10.1002/hbm.21098
PMid:20814964 PMCid:PMC6869924
Tomasevic L, Zito G, Pasqualetti P, Filippi M, Landi D, Ghazaryan A, et al. Corticomuscular coherence as an index of fatigue in multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2013 Mar;19(3):334-43.
https://doi.org/10.1177/1352458512452921
PMid:22760098
Baldini S, Morelli ME, Sartori A, Pasquin F, Dinoto A, Bratina A, et al. Microstates in multiple sclerosis: an electrophysiological signature of altered largescale networks functioning? Brain Commun. 2022 Nov 23;5(1):fcac255.
https://doi.org/10.1093/braincomms/fcac255
PMid:36601622 PMCid:PMC9806850
Shin W, Krishnan B, Nemani A, Ontaneda D, Lowe MJ. Investigation of neuro-vascular reactivity on fMRI study during visual activation in people with multiple sclerosis using EEG and hypercapnia challenge. Medical Physics. 2025 Jun;52(6):508190.
https://doi.org/10.1002/mp.17772
PMid:40116356 PMCid:PMC12149704
Tramonti C, Imperatori LS, Fanciullacci C, Lamola G, Lettieri G, Bernardi G, et al. Predictive value of electroencephalography connectivity measures for motor training outcome in multiple sclerosis. an observational longitudinal study: Eur J Phys Rehabil Med [Internet] 2020 Jan [cited 2025 May 14]; Available from: https://www.minervamedica.it/index2.php?show=R33Y2019N06A0743
Leodori G, Mancuso M, Maccarrone D, Tartaglia M, Ianniello A, Certo F, et al. Neural bases of motor fatigue in multiple sclerosis: A multimodal approach using neuromuscular assessment and TMSEEG. Neurobiol Dis. 2023 May;180:106073.
https://doi.org/10.1016/j.nbd.2023.106073
PMid:36906073
Leodori G, Mancuso M, Maccarrone D, Tartaglia M, Ianniello A, Certo F, et al. Insight into motor fatigue mechanisms in natalizumab treated multiple sclerosis patients with wearing off. Sci Rep. 2024 Jul 26;14(1):17654.
https://doi.org/10.1038/s41598-024-68322-w
PMid:39085330 PMCid:PMC11291752
Rocca MA, Romanò F, Tedone N, Filippi M. Advanced neuroimaging techniques to explore the effects of motor and cognitive rehabilitation in multiple sclerosis. J Neurol. 2024 Jul;271(7):3806-48.
https://doi.org/10.1007/s00415-024-12395-0
PMid:38691168
Bardel B, Ayache SS, Lefaucheur JP. The contribution of EEG to assess and treat motor disorders in multiple sclerosis. Clin Neurophysiol. 2024 Jun;162:174-200.
https://doi.org/10.1016/j.clinph.2024.03.024
PMid:38643612
Wattjes MP, Ciccarelli O, Reich DS, Banwell B, De Stefano N, Enzinger C, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021 Aug;20(8):653-70.
https://doi.org/10.1016/S1474-4422(21)00095-8
PMid:34139157
Balachandrasekaran A, Cohen AL, Afacan O, Warfield SK, Gholipour A. Reducing the Effects of Motion Artifacts in fMRI: A Structured Matrix Completion Approach. IEEE Trans Med Imaging. 2022 Jan;41(1):172-85.
https://doi.org/10.1109/TMI.2021.3107829
PMid:34432631 PMCid:PMC8934405
Brambilla C, Pirovano I, Mira RM, Rizzo G, Scano A, Mastropietro A. Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. Sensors. 2021 Jan;21(21):7014.
https://doi.org/10.3390/s21217014
PMid:34770320 PMCid:PMC8588321
Voets NL, Ashtari M, Beckmann CF, Benjamin CF, Benzinger T, Binder JR, et al. Consensus recommendations for clinical functional MRI applied to language mapping. Aperture Neuro [Internet]: 2025 Jan 23 [cited 2025 May 14]; Available from: https://apertureneuro.org/
https://doi.org/10.52294/001c.128149
Cruciani A, Santoro F, Pozzilli V, Todisco A, Pilato F, Motolese F, et al. Neurophysiological methods for assessing and treating cognitive impairment in multiple sclerosis: A scoping review of the literature. Mult Scler Relat Disord. 2024 Nov;91:105892.
https://doi.org/10.1016/j.msard.2024.105892
PMid:39299184
Manca A, Cereatti A, BarOn L, Botter A, Della Croce U, Knaflitz M, et al. A Survey on the Use and Barriers of Surface Electromyography in Neurorehabilitation. Front Neurol. 2020 Oct 2;11:573616.
https://doi.org/10.3389/fneur.2020.573616
PMid:33123079 PMCid:PMC7566898
Tomassini V, Sinclair A, Sawlani V, Overell J, Pearson OR, Hall J, et al. Diagnosis and management of multiple sclerosis: MRI in clinical practice. J Neurol. 2020 Oct;267(10):2917-25.
https://doi.org/10.1007/s00415-020-09930-0
PMid:32472179 PMCid:PMC7501096
Collorone S, Coll L, Lorenzi M, Lladó X, SastreGarriga J, Tintoré M, et al. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult Scler J. 2024 Jun;30(7):767-84.
https://doi.org/10.1177/13524585241249422
PMid:38738527
Zakeri H, Radmehr M, Khademi F, Pedramfard P, Montazeri L, Ghanaatpisheh M, et al. Utilizing Artificial Intelligence for the Diagnosis, Assessment, and Management of Chronic Pain. J Biomed Phys Eng [Internet]: 2023 [cited 2024 Sep 23]; Available from: https://jbpe.sums.ac.ir/article_49736.html
Denissen S, Chén OY, De Mey J, De Vos M, Van Schependom J, Sima DM, et al. Towards Multimodal Machine Learning Prediction of Individual Cognitive Evolution in Multiple Sclerosis. J Pers Med. 2021 Dec;11(12):1349.
https://doi.org/10.3390/jpm11121349
PMid:34945821 PMCid:PMC8707909
Ham AS, Hacker CT, Guo J, SorbyAdams A, Kimberly WT, Mateen FJ. Feasibility and tolerability of portable, lowfield brain MRI for patients with multiple sclerosis. Mult Scler Relat Disord. 2024 May;85:105515.
https://doi.org/10.1016/j.msard.2024.105515
PMid:38489947
Mahmood M, Kwon YT, Kim YS, Kim J, Yeo WH. Smart and Connected Physiological Monitoring Enabled by Stretchable Bioelectronics and DeepLearning Algorithm. In: 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) [Internet]; Available from: https://ieeexplore.ieee.org/document/9159267/
https://doi.org/10.1109/ECTC32862.2020.00159
PMid:33342736
Kimberly WT, SorbyAdams AJ, Webb AG, Wu EX, Beekman R, Bowry R, et al. Brain imaging with portable lowfield MRI. Nat Rev Bioeng. 2023 Jul 17;1(9):617-30.
https://doi.org/10.1038/s44222-023-00086-w
PMid:37705717 PMCid:PMC10497072
article/128149consensusrecommendationsforclinicalfunctionalmriappliedtolanguagemapping
Cruciani A, Santoro F, Pozzilli V, Todisco A, Pilato F, Motolese F, et al. Neurophysiological methods for assessing and treating cognitive impairment in multiple sclerosis: A scoping review of the literature. Mult Scler Relat Disord. 2024 Nov;91:105892.
https://doi.org/10.1016/j.msard.2024.105892
PMid:39299184
Manca A, Cereatti A, BarOn L, Botter A, Della Croce U, Knaflitz M, et al. A Survey on the Use and Barriers of Surface Electromyography in Neurorehabilitation. Front Neurol. 2020 Oct 2;11:573616.
https://doi.org/10.3389/fneur.2020.573616
PMid:33123079 PMCid:PMC7566898
Tomassini V, Sinclair A, Sawlani V, Overell J, Pearson OR, Hall J, et al. Diagnosis and management of multiple sclerosis: MRI in clinical practice. J Neurol. 2020 Oct;267(10):2917-25.
https://doi.org/10.1007/s00415-020-09930-0
PMid:32472179 PMCid:PMC7501096
Collorone S, Coll L, Lorenzi M, Lladó X, SastreGarriga J, Tintoré M, et al. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult Scler J. 2024 Jun;30(7):767-84.
https://doi.org/10.1177/13524585241249422
PMid:38738527
Zakeri H, Radmehr M, Khademi F, Pedramfard P, Montazeri L, Ghanaatpisheh M, et al. Utilizing Artificial Intelligence for the Diagnosis, Assessment, and Management of Chronic Pain. J Biomed Phys Eng [Internet]: 2023 [cited 2024 Sep 23]; Available from: https://jbpe.sums.ac.ir/article_49736.html
Denissen S, Chén OY, De Mey J, De Vos M, Van Schependom J, Sima DM, et al. Towards Multimodal Machine Learning Prediction of Individual Cognitive Evolution in Multiple Sclerosis. J Pers Med. 2021 Dec;11(12):1349.
https://doi.org/10.3390/jpm11121349
PMid:34945821 PMCid:PMC8707909
Ham AS, Hacker CT, Guo J, SorbyAdams A, Kimberly WT, Mateen FJ. Feasibility and tolerability of portable, lowfield brain MRI for patients with multiple sclerosis. Mult Scler Relat Disord. 2024 May;85:105515.
https://doi.org/10.1016/j.msard.2024.105515
PMid:38489947
Mahmood M, Kwon YT, Kim YS, Kim J, Yeo WH. Smart and Connected Physiological Monitoring Enabled by Stretchable Bioelectronics and DeepLearning Algorithm. In: 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) [Internet]; Available from: https://ieeexplore.ieee.org/document/9159267/
https://doi.org/10.1109/ECTC32862.2020.00159
PMid:33342736
Kimberly WT, SorbyAdams AJ, Webb AG, Wu EX, Beekman R, Bowry R, et al. Brain imaging with portable lowfield MRI. Nat Rev Bioeng. 2023 Jul 17;1(9):617-30.
https://doi.org/10.1038/s44222-023-00086-w
PMid:37705717 PMCid:PMC10497072

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.