In vitro Effects of 0.05% Cetylpyridinium Chloride and 1% Povidone Iodine on Flexural Strength of Nickel-Titanium Orthodontic Wires

Authors

  • Manijeh Mohammadian Department of Dental Biomaterials, School of Dentistry, Iran University of Medical Sciences, Tehran, Iran
  • Parisa Ghiasi Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
  • Milad Soleimani Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Keywords:

Cetylpyridinium; Povidone-Iodine; Mouthwashes; Orthodontic Wires; COVID-19

Abstract

Background: This study assessed the effects of 0.05% cetylpyridinium chloride (CPC) and 1% povidone iodine (PI) on flexural strength of nickel-titanium (NiTi) orthodontic wires. Materials and Methods: In this in vitro, experimental study, 27 pieces of NiTi orthodontic wires were randomly assigned to three groups (n=9) for immersion in 0.05% CPC, 1% PI, and distilled water (control) at 37°C for 90 minutes. After immersion, the modulus of elasticity, the yield strength, the mean force during the loading and unloading phases at 0.5 mm intervals of each wire (0.5, 1, 2.5, 2, and 2.5 mm), and the flexural strength of the wires were measured by the three-point bending test. Surface topography and corrosion of the wires were also inspected under a scanning electron microscope (SEM). Data were analyzed by one-way ANOVA and Tukey test (alpha=0.05). Results: CPC significantly increased the flexural strength of the wires (P<0.05); while, the flexural strength was not significantly different in the PI and control groups (P>0.05). CPC significantly increased the generated force during loading at all bending points and during unloading at 0.5- and 1-mm points (P<0.05). PI increased the generated force during loading at 0.5 and 1 mm, and during unloading at 2.5 mm point (P<0.05). CPC and PI had no significant effect on the yield strength in loading and unloading phases (P>0.05). CPC and PI caused superficial corrosion of the wires. Conclusion: CPC (0.05%) and PI (1%) increased the mean force generated during unloading of the wires, their modulus of elasticity, and flexural strength.

References

Iijima M, Endo K, Yuasa T, Ohno H, Hayashi K, Kakizaki M et al. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys. Angle Orthod. 2006;76(4):70511.

Barrett RD, Bishara SE, Quinn JK. Biodegradation of orthodontic appliances Part I Biodegradation of nickel and chromium in vitro. Am J Orthod Dentofacial Orthop. 1993;103(1):814.

https://doi.org/10.1016/0889-5406(93)70098-9

Chaturvedi TP, Upadhayay SN. An overview of orthodontic material degradation in oral cavity. Indian J Dent Res. 2010;21(2):27584.

https://doi.org/10.4103/0970-9290.66648

Jahanbin A, Shahabi M, Mokhber N, Tavakkolian Ardakani E. Comparison of nickel ion release and corrosion sites among commonly used stainless steel brackets in Iran. J Mash Dent Sch. 2009;33(1):1724.

Yanisarapan T, Thunyakitpisal P, Chantarawaratit Po. Corrosion of metal orthodontic brackets and archwires caused by fluoridecontaining products: Cytotoxicity, metal ion release and surface roughness. Orthodontic Waves. 2018;77(2):7989.

https://doi.org/10.1016/j.odw.2018.02.001

Tahmasbi S, Ghorbani M, Masudrad M. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoridecontaining Mouthwash. J Dent Res Dent Clin Dent Prospects. 2015;9(3):15965.

https://doi.org/10.15171/joddd.2015.030

Huang ZM, Gopal R, Fujihara K, Ramakrishna S, Loh PL, Foong WC et al. Fabrication of a new composite orthodontic archwire and validation by a bridging micromechanics model. Biomaterials. 2003;24(17):294153.

https://doi.org/10.1016/S0142-9612(03)00093-0

Hammad SM, AlWakeel EE, Gad el S. Mechanical properties and surface characterization of translucent composite wire following topical fluoride treatment. Angle Orthod. 2012;82(1):813.

https://doi.org/10.2319/030811-168.1

Aghili H, Yasssaei S, Ahmadabadi MN, Joshan N. Load Deflection Characteristics of Nickel Titanium Initial Archwires. J Dent (Tehran). 2015;12(9):695704.

Gatto E, Matarese G, Di Bella G, Nucera R, Borsellino C, Cordasco G. Loaddeflection characteristics of superelastic and thermal nickeltitanium wires. Eur J Orthod. 2013;35(1):11523.

https://doi.org/10.1093/ejo/cjr103

Braun S, Sjursen RC, Legan HL. Variable modulus orthodontics advanced through an auxiliary archwire attachment. Angle Orthod. 1997;67(3):21922.

Bellini H, Moyano J, Gil J, Puigdollers A. Comparison of the superelasticity of different nickeltitanium orthodontic archwires and the loss of their properties by heat treatment. J Mater Sci Mater Med. 2016;27(10):158.

https://doi.org/10.1007/s10856-016-5767-5

Albuquerque CG, Correr AB, Venezian GC, Santamaria M, Tubel CA, Vedovello SA. Deflection and Flexural Strength Effects on the Roughness of AestheticCoated Orthodontic Wires. Braz Dent J. 2017;28(1):405.

https://doi.org/10.1590/0103-6440201700630

Alavi S, Barooti S, BorzabadiFarahani A. An in vitro assessment of the mechanical characteristics of nickeltitanium orthodontic wires in Fluoride solutions with different acidities. J Orthod Sci. 2015;4(2):526.

https://doi.org/10.4103/2278-0203.156030

Bhaskar V, Subba Reddy VV. Biodegradation of nickel and chromium from space maintainers: an in vitro study. J Indian Soc Pedod Prev Dent. 2010;28(1):612.

https://doi.org/10.4103/0970-4388.60484

Schiff N, Dalard F, Lissac M, Morgon L, Grosgogeat B. Corrosion resistance of three orthodontic brackets: a comparative study of three fluoride mouthwashes. Eur J Orthod. 2005;27(6):5419.

https://doi.org/10.1093/ejo/cji050

Mikulewicz M, Wołowiec P, Janeczek M, Gedrange T, Chojnacka K. The release of metal ions from orthodontic appliances animal tests. Angle Orthod. 2014;84(4):6739.

https://doi.org/10.2319/090213-641.1

Dogan AA, Cetin ES, Hüssein E, Adiloglu AK. Microbiological evaluation of octenidine dihydrochloride mouth rinse after 5 days' use in orthodontic patients. Angle Orthod. 2009;79(4):76672.

https://doi.org/10.2319/062008-322.1

Pahwa N, Kumar A, Gupta S. Short term clinical effectiveness of a 0.07% cetylpyridinium chloride mouth rinse in patients undergoing fixed orthodontic appliance treatment. Saudi Dent J. 2011;23(3):13541.

https://doi.org/10.1016/j.sdentj.2011.03.001

Maurya RK, Singh H, Kapoor P, Sharma P, Srivastava D. Povidoneiodine preprocedural rinseAn evidencebased, secondline defense against severe acute respiratory coronavirus virus 2 (SARSCoV2) in dental healthcare. Infect Control Hosp Epidemiol. 2022;43(6):8224.

https://doi.org/10.1017/ice.2021.90

Eliades T, Koletsi D. Minimizing the aerosolgenerating procedures in orthodontics in the era of a pandemic: Current evidence on the reduction of hazardous effects for the treatment team and patients. Am J Orthod Dentofacial Orthop. 2020;158(3):33042.

https://doi.org/10.1016/j.ajodo.2020.06.002

Mao X, Auer DL, Buchalla W, Hiller KA, Maisch T, Hellwig E, AlAhmad A, Cieplik F. Cetylpyridinium chloride: mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrobial agents and chemotherapy. 2020 Jul 22;64(8):10128.

https://doi.org/10.1128/AAC.00576-20

Nasila K, Shijith KV, Mohammed S, Ramya C. A review on cetylpyridinium chloride. International Journal of Research and Review. 2021 May 3;8(4):43945.

https://doi.org/10.52403/ijrr.20210453

Cutter CN, Dorsa WJ, Handie A, RodriguezMorales S, Zhou X, Breen PJ, Compadre CM. Antimicrobial activity of cetylpyridinium chloride washes against pathogenic bacteria on beef surfaces. Journal of Food Protection. 2000 May 1;63(5):593600.

https://doi.org/10.4315/0362-028X-63.5.593

Miranda SL, Damaceno JT, Faveri M, Figueiredo LC, Soares GM, Feres M, BuenoSilva B. In vitro antimicrobial effect of cetylpyridinium chloride on complex multispecies subgingival biofilm. Brazilian dental journal. 2020 Jun 12;31(2):1038.

https://doi.org/10.1590/0103-6440202002630

Franklin GG, Klukowska MA, Zhang YH, Anastasia MK, Cheng R, Gabbard M, ET AL. Comparative bioavailability and antimicrobial activity of cetylpyridinium chloride mouthrinses in vitro and in vivo. American journal of dentistry. 2014 Aug;27(4): 185190.

Dubovoy V, Nawrocki S, Verma G, Wojtas L, Desai P, AlTameemi H, Brinzari TV, Stranick M, Chen D, Xu S, Ma S. Synthesis, characterization, and investigation of the antimicrobial activity of cetylpyridinium tetrachlorozincate. ACS omega. 2020 Apr 28;5(18):1035965.

https://doi.org/10.1021/acsomega.0c00131

Reimer K, Wichelhaus TA, Schäfer V, Rudolph P, Kramer A, Wutzler P, ET AL. Antimicrobial effectiveness of povidoneiodine and consequences for new application areas. Dermatology. 2002 Jul 5;204:11420.

https://doi.org/10.1159/000057738

Barreto R, Barrois B, Lambert J, MalhotraKumar S, SantosFernandes V, Monstrey S. Addressing the challenges in antisepsis: focus on povidone iodine. International journal of antimicrobial agents. 2020 Sep 1;56(3):106064.

https://doi.org/10.1016/j.ijantimicag.2020.106064

Meehan JP. Dilute povidoneiodine irrigation: the science of molecular iodine (I2) kinetics and its antimicrobial activity. JAAOSJournal of the American Academy of Orthopaedic Surgeons. 2025 Jan 15;33(2):6573.

https://doi.org/10.5435/JAAOS-D-24-00471

Lepelletier D, Maillard JY, Pozzetto B, Simon A. Povidone iodine: properties, mechanisms of action, and role in infection control and Staphylococcus aureus decolonization. Antimicrobial agents and chemotherapy. 2020 Aug 20;64(9):10128.

https://doi.org/10.1128/AAC.00682-20

Eggers M. Infectious disease management and control with povidone iodine. Infectious diseases and therapy. 2019 Dec;8(4):58193.

https://doi.org/10.1007/s40121-019-00260-x

Walker MP, Ries D, Kula K, Ellis M, Fricke B. Mechanical properties and surface characterization of beta titanium and stainless steel orthodontic wire following topical fluoride treatment. Angle Orthod. 2007;77(2):3428.

https://doi.org/10.2319/0003-3219(2007)077[0342:MPASCO]2.0.CO;2

Walker MP, White RJ, Kula KS. Effect of fluoride prophylactic agents on the mechanical properties of nickeltitaniumbased orthodontic wires. Am J Orthod Dentofacial Orthop. 2005;127(6):6629.

https://doi.org/10.1016/j.ajodo.2005.01.015

Aghili H, Yassaei S, Eslami F. Evaluation of the effect of three mouthwashes on the mechanical properties and surface morphology of several orthodontic wires: An in vitro study. Dent Res J (Isfahan). 2017;14(4):2529.

https://doi.org/10.4103/1735-3327.211629

Beer FP, Johnston ER, DeWolf JT, Mazurek DF. Mechanics of Materials. 7th ed New York: McGrawHill; 2015.

ASTM E8/E8M22. Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken, PA: ASTM International; 2022.

Kim H, Johnson JW. Corrosion of stainless steel, nickeltitanium, coated nickeltitanium, and titanium orthodontic wires. Angle Orthod. 1999;69(1):3944.

Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH et al. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials. 2003;24(20):358592.

https://doi.org/10.1016/S0142-9612(03)00188-1

Setcos JC, BabaeiMahani A, Silvio LD, Mjör IA, Wilson NH. The safety of nickel containing dental alloys. Dent Mater. 2006;22(12):11638.

https://doi.org/10.1016/j.dental.2005.11.033

Gursoy UK, Sokucu O, Uitto VJ, Aydin A, Demirer S, Toker H et al. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatmentinduced gingival overgrowth. Eur J Orthod. 2007;29(6):5558.

https://doi.org/10.1093/ejo/cjm074

Hosseinzadeh Nik T, Ghadirian H, Ahmadabadi MN, Shahhoseini T, HajFathalian M. Effect of saliva on loaddeflection characteristics of superelastic nickeltitanium orthodontic wires. J Dent (Tehran). 2012;9(4):1719.

Proffit W. Orthodontic treatment planning: limitations, controversies, and special problems. Contemporary orthodontics. 2000:2769.

Rincic Mlinaric M, Karlovic S, Ciganj Z, Acev DP, Pavlic A, Spalj S. Oral antiseptics and nickeltitanium alloys: mechanical and chemical effects of interaction. Odontology. 2019;107(2):1507.

https://doi.org/10.1007/s10266-018-0387-9

Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glassionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22(7):64752.

https://doi.org/10.1016/j.dental.2005.08.003

Katic V, Curkovic L, Bosnjak MU, Peros K, Mandic D, Spalj S. Effect of pH, fluoride and hydrofluoric acid concentration on ion release from NiTi wires with various coatings. Dent Mater J. 2017;36(2):14956.

https://doi.org/10.4012/dmj.2016-169

Hashim RS, AlJoubori SK. Effect of Different Fluoride Agents on the Load Deflection Characteristics of Heat Activated Nickel Titanium Arch Wires (An in Vitro Study). Journal of Baghdad College of Dentistry. 2017;29(1):1604.

https://doi.org/10.12816/0038665

Kupka T, Nowak J, Szczesio A, Kopacz K, FronczekWojciechowska M, Sokołowski J. Impact of modification with cetylpyridinium chloride a potential cariogenic microbiota inhibitor, on selected physicalmechanical properties of the wateractivated glassionomer. Acta Bioeng Biomech. 2018;20(4):1924.

Burstone CJ. Variablemodulus orthodontics. Am J Orthod. 1981;80(1):116.

https://doi.org/10.1016/0002-9416(81)90192-5

Mane P, Ganiger CR, Pawar R, Phaphe S, Ronad YA, Valekar S et al. Effect of fluoride on mechanical properties of NiTi and CuNiTi orthodontic archwires: an in vitro study. Dental Press J Orthod. 2021;26(2):e212020.

https://doi.org/10.1590/2177-6709.26.2.e212020.oar

Gupta AK, Shukla G, Sharma P, Gupta AK, Kumar A, Gupta D. Evaluation of the Effects of Fluoride Prophylactic Agents on Mechanical Properties of Nickel Titanium Wires using Scanning Electron Microscope. J Contemp Dent Pract. 2018;19(3):2836.

https://doi.org/10.5005/jp-journals-10024-2253

Sander K. The effect of topical fluoride agents on coated nickel. titanium archwires: University of MissouriKansas City; 2015.

Ogawa CM, Faltin K, Maeda FA, Ortolani CLF, Guaré RO, Cardoso CAB, et al. In vivo assessment of the corrosion of nickeltitanium orthodontic archwires by using scanning electron microscopy and atomic force microscopy. Microsc Res Tech. 2020;83(8):92836.

https://doi.org/10.1002/jemt.23486

Downloads

Published

2025-12-15

How to Cite

Mohammadian , M., Ghiasi , P., & Soleimani, M. (2025). In vitro Effects of 0.05% Cetylpyridinium Chloride and 1% Povidone Iodine on Flexural Strength of Nickel-Titanium Orthodontic Wires. Galen Medical Journal, 14(SP1), e3969. Retrieved from https://journals.salviapub.com/index.php/gmj/article/view/3969