Effects of Preanhepatic Glucose-Insulin Infusion on Metabolic and Hemodynamic Outcomes in Liver Transplantation: A Randomized Clinical Trial
DOI:
https://doi.org/10.31661/gmj.v14i.3971Keywords:
Liver Transplantation; Glucose-Insulin Infusion; Hemodynamic Stability; Metabolic Outcomes; Randomized Controlled TrialAbstract
Background: Liver transplantation is a complex procedure requiring meticulous perioperative management to optimize outcomes. The administration of glucose-insulin solutions during the preanhepatic phase may influence hemodynamic and metabolic stability. This study aimed to evaluate the effects of dextrose-insulin infusion on hemodynamic, metabolic, and clinical outcomes in liver transplant recipients. Materials and Methods: A randomized, double-blinded clinical trial was conducted on 88 patients (1:1 allocation) undergoing liver transplantation at Taleghani Hospital, Iran. The intervention group received dextrose 50% (1g/kg) and insulin (1u/kg), while the control group received normal saline. Hemodynamic parameters (cardiac output, vascular resistance), metabolic markers (glucose, potassium, lactate), and clinical outcomes (hospital stay, complications) were assessed across preanhepatic, anhepatic, and reperfusion phases. Statistical analysis was performed using SPSS v27.0. Results: The intervention group demonstrated significantly higher cardiac output (6.95±1.66 vs. 5.56±2.02 L/min, P<0.001) and lower inotropic requirements (65.9% vs. 88.6%, P=0.018) during the anhepatic phase. Postoperatively, the intervention group had reduced ALT (P=0.038), AST (P=0.019), bilirubin (P=0.021), BNP (P=0.002), and lactate (P<0.001). No differences were observed in hospital stay, ICU duration, or complication rates. Conclusion: Dextrose-insulin administration during liver transplantation improves intraoperative hemodynamics and reduces postoperative metabolic stress without increasing adverse events.
References
Mahmud N. Selection for liver transplantation: indications and evaluation. Current hepatology reports. 2020;19(3):203-12.
https://doi.org/10.1007/s11901-020-00527-9
PMid:32837824 PMCid:PMC7302921
Murray KF, Carithers Jr RL. AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology. 2005 Jun;41(6):1407-32.-Gurusamy KS, Koti R, Pamecha V, Davidson BR. Veno‐venous bypass versus none for liver transplantation. Cochrane Database of Systematic Reviews. 2011(3).
Cho J-K, Moon YJ, Song IK, Kang E-J, Shin W-J, Hwang GS. A Look Into Hemostatic Characteristics During Pediatric Liver Transplantation Using the Thromboelastometry (ROTEM®) Test. Liver Transplantation. 2022;28(10):1628-39.
https://doi.org/10.1002/lt.26463
PMid:35352459 PMCid:PMC9790550
Novakovic-Anucin S, Kosanovic D, Gnip S, Canak V, Čabarkapa V, Mitić G. Comparison of Standard Coagulation Tests and Rotational Thromboelastometry for Hemostatic System Monitoring During Orthotopic Liver Transplantation: Results From a Pilot Study. Medicinski Pregled. 2015;68(9-10):301-7.
https://doi.org/10.2298/MPNS1510301N
PMid:26727826
Hei Z, Chi X, Cheng N, Luo G, Li S. Upregulation of TLR2/4 Expression in Mononuclear Cells in Postoperative Systemic Inflammatory Response Syndrome After Liver Transplantation. Mediators of Inflammation. 2010;2010:1-7.
https://doi.org/10.1155/2010/519589
PMid:20634913 PMCid:PMC2904457
Leithead JA, Tariciotti L, Gunson BK, Holt A, Isaac J, Mirza DF, et al. Donation After Cardiac Death Liver Transplant Recipients Have an Increased Frequency of Acute Kidney Injury. American Journal of Transplantation. 2012;12(4):965-75.
https://doi.org/10.1111/j.1600-6143.2011.03894.x
PMid:22226302
Park CS. Predictive roles of intraoperative blood glucose for post-transplant outcomes in liver transplantation. World Journal of Gastroenterology: WJG. 2015;21(22):6835.
https://doi.org/10.3748/wjg.v21.i22.6835
PMid:26078559 PMCid:PMC4462723
Kang R, Han S, Lee KW, Kim GS, Choi SJ, Ko JS, et al. Portland intensive insulin therapy during living donor liver transplantation: association with postreperfusion hyperglycemia and clinical outcomes. Scientific Reports. 2018;8(1):16306.
https://doi.org/10.1038/s41598-018-34655-6
PMid:30390037 PMCid:PMC6214899
Hassanain M, Metrakos P, Fisette A, Doi S, Schricker T, Lattermann R, et al. Randomized clinical trial of the impact of insulin therapy on liver function in patients undergoing major liver resection. Journal of British Surgery. 2013;100(5):610-8.
https://doi.org/10.1002/bjs.9034
PMid:23339047
Eshraghian A, Nikeghbalian S, Shamsaeefar A, Kazemi K, Fattahi MR, Malek-Hosseini SA. Hepatic steatosis and liver fat contents in liver transplant recipients are associated with serum adipokines and insulin resistance. Scientific Reports. 2020;10(1):12701.
https://doi.org/10.1038/s41598-020-69571-1
PMid:32728230 PMCid:PMC7391625
Omiya K, Koo BW, Sato H, Sato T, Kandelman S, Nooh A, Schricker T. Randomized controlled trial of the effect of hyperinsulinemic normoglycemia during liver resection on postoperative hepatic function and surgical site infection. Annals of Translational Medicine. 2023 Mar 15;11(5):205.
https://doi.org/10.21037/atm-22-3721
PMid:37007572 PMCid:PMC10061465
Gedik E, Toprak Hİ, Koca E, Şahin T, Özgül Ü, Ersoy MÖ. Blood glucose regulation during living-donor liver transplant surgery. Experimental and Clinical Transplantation. 2015 Apr 1;13(1):294-300.
https://doi.org/10.6002/ect.mesot2014.P137
PMid:25894177
Sato H, Lattermann R, Carvalho G, Sato T, Metrakos P, Hassanain M, Matsukawa T, Schricker T. Perioperative glucose and insulin administration while maintaining normoglycemia (GIN therapy) in patients undergoing major liver resection. Anesthesia & Analgesia. 2010 Jun 1;110(6):1711-8.
https://doi.org/10.1213/ANE.0b013e3181d90087
PMid:20375299
Cywes RO, Greig PD, Sanabria JR, Clavien PA, Levy GA, Harvey PR, Strasberg SM. Effect of intraportal glucose infusion on hepatic glycogen content and degradation, and outcome of liver transplantation. Annals of surgery. 1992 Sep;216(3):235.
https://doi.org/10.1097/00000658-199209000-00003
PMid:1417173 PMCid:PMC1242600
Ellenberger C, Sologashvili T, Kreienbühl L, Cikirikcioglu M, Diaper J, Licker M. Myocardial protection by glucose-insulin-potassium in moderate-to high-risk patients undergoing elective on-pump cardiac surgery: a randomized controlled trial. Anesthesia & Analgesia. 2018;126(4):1133-41.
https://doi.org/10.1213/ANE.0000000000002777
PMid:29324494
Shim J-K, Yang S-Y, Yoo Y-C, Yoo K-J, Kwak Y-L. Myocardial protection by glucose-insulin-potassium in acute coronary syndrome patients undergoing urgent multivessel off-pump coronary artery bypass surgery. British journal of anaesthesia. 2013;110(1):47-53.
https://doi.org/10.1093/bja/aes324
PMid:22986417
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, et al. Insulin-heart axis: bridging physiology to insulin resistance. International Journal of Molecular Sciences. 2024;25(15):8369.
https://doi.org/10.3390/ijms25158369
PMid:39125938 PMCid:PMC11313400
Maiese K. New insights for oxidative stress and diabetes mellitus. Oxidative medicine and cellular longevity. 2015;2015(1):875961.
https://doi.org/10.1155/2015/875961
PMid:26064426 PMCid:PMC4443788
Ng KW, Allen M, Desai A, MacRae D, Pathan N. Cardioprotective Effects of Insulin. Circulation. 2012;125(5):721-8.
https://doi.org/10.1161/CIRCULATIONAHA.111.063784
PMid:22311884
Araujo J, Miguel-Dos-Santos R, Macedo FN, Cunha PS, Fontes MT, Murata GM, et al. Effects of high doses of glucocorticoids on insulin-mediated vasodilation in the mesenteric artery of rats. PLoS One. 2020;15(3):e0230514.
https://doi.org/10.1371/journal.pone.0230514
PMid:32187237 PMCid:PMC7080254
Jayarathna MJS, Dassanayake BK, Dorji T, Lucero-Prisno DE 3rd, Samarasinghe S, Pinto V, Lamawansa MD. Challenges of liver transplantation programs in low- and middle-income countries: An experience from Sri Lanka. Public Health Chall. 2024 Feb 20;3(1):e162.
https://doi.org/10.1002/puh2.162
PMid:40497070 PMCid:PMC12060752
Feng Z-Y, Xu X, Zhu S-M, Bein B, Zheng S-S. Effects of low central venous pressure during preanhepatic phase on blood loss and liver and renal function in liver transplantation. World journal of surgery. 2010;34:1864-73.
https://doi.org/10.1007/s00268-010-0544-y
PMid:20372900
Dennhardt N, Beck C, Huber D, Nickel K, Sander B, Witt L-H, et al. Impact of preoperative fasting times on blood glucose concentration, ketone bodies and acid-base balance in children younger than 36 months: a prospective observational study. European Journal of Anaesthesiology| EJA. 2015;32(12):857-61.
https://doi.org/10.1097/EJA.0000000000000330
Kim J, Okamoto H, Huang ZJ, Anguiano G, Chen S, Liu Q, et al. Amino Acid Transporter Slc38a5 Controls Glucagon Receptor Inhibition-Induced Pancreatic Α Cell Hyperplasia in Mice. Cell Metabolism. 2017;25(6):1348-61.e8.
https://doi.org/10.1016/j.cmet.2017.05.006
PMid:28591637 PMCid:PMC8206958
Lee EY, Sakurai K, Zhang X, Toda C, Tanaka T, Jiang M, Shirasawa T, Tachibana K, Yokote K, Vidal-Puig A, Minokoshi Y. Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in Insr P1195L/+ mice fed high-fat-diet. Scientific reports. 2015 Nov 30;5(1):17565.
https://doi.org/10.1038/srep17565
PMid:26615883 PMCid:PMC4663474
Zhang F, Xu X, Zhang Y, Zhou B, He Z, Zhai Q. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver. Plos One. 2013;8(3):e57766.
https://doi.org/10.1371/journal.pone.0057766
PMid:23469233 PMCid:PMC3585940
Phypers B, Pierce JT. Lactate physiology in health and disease. Continuing education in Anaesthesia, critical care & pain. 2006;6(3):128-32.
https://doi.org/10.1093/bjaceaccp/mkl018
Scheiner B, Lindner G, Reiberger T, Schneeweiss B, Trauner M, Zauner C, et al. Acid-base disorders in liver disease. Journal of hepatology. 2017;67(5):1062-73.
https://doi.org/10.1016/j.jhep.2017.06.023
PMid:28684104
Baldini N, Avnet S. The effects of systemic and local acidosis on insulin resistance and signaling. International Journal of Molecular Sciences. 2018;20(1):126.
https://doi.org/10.3390/ijms20010126
PMid:30598026 PMCid:PMC6337415
Della Guardia L, Thomas MA, Cena H. Insulin sensitivity and glucose homeostasis can be influenced by metabolic acid load. Nutrients. 2018;10(5):618.
https://doi.org/10.3390/nu10050618
PMid:29762478 PMCid:PMC5986498
Greco G, Kirkwood KA, Gelijns AC, Moskowitz AJ, Lam DW. Diabetes is associated with reduced stress hyperlactatemia in cardiac surgery. Diabetes care. 2018;41(3):469-77.
https://doi.org/10.2337/dc17-1554
PMid:29263164
Adar T, Mizrahi M, Lichtenstein Y, Shabat Y, Sakhnini R, Zolotarov L, et al. Increased Hepatic Akt Phosphorylation Alleviated Glucose Intolerance and Improved Liver Function In Leptin-Deficient Mice. Clinical and Experimental Hepatology. 2023;9(2):154-71.
https://doi.org/10.5114/ceh.2023.127849
PMid:37502436 PMCid:PMC10369657
Foster MT, Shi H, Softic S, Kohli R, Seeley RJ, Woods SC. Transplantation of Non-Visceral Fat to the Visceral Cavity Improves Glucose Tolerance in Mice: Investigation of Hepatic Lipids and Insulin Sensitivity. Diabetologia. 2011;54(11):2890-9.
https://doi.org/10.1007/s00125-011-2259-5
PMid:21805228 PMCid:PMC5451325
Błaszczyk B, Wrońska B, Klukowski M, Flakiewicz E, Kołacz M, Jureczko L, Pacholczyk M, Chmura A, Trzebicki J. Factors Affecting Breathing Capacity and Early Tracheal Extubation After Liver Transplantation: Analysis of 506 Cases. Transplant Proc. 2016 Jun;48(5):1692-6.
https://doi.org/10.1016/j.transproceed.2016.01.053
PMid:27496473

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.