Effects Following Intracerebroventricular Injection of Immunosuppressant Cyclosporine A On Inhibitory Avoidance Learning and Memory in Mice
DOI:
https://doi.org/10.31661/gmj.v7i.1044Keywords:
Avoidance Learning, Calcineurin Inhibitor, Cyclosporine A, MiceAbstract
Background: Protein phosphatase-2B or calcineurin (CN) is the main phosphatase and a critical regulator of cellular pathways for learning, memory, and plasticity. Cyclosporine A(CyA), a phosphatase and peptidyl-prolyl cis/trans isomerase inhibitor, is a common immune suppressant extensively used in tissue transplantation. To further clarify the role of CN in different stages of learning and memory, the aim of the present study was to evaluate the role of CyA in an inhibitory avoidance (IA) model in mice.
Materials and Methods: Using intracerebroventricular (ICV) injection of different doses of CyA (0.5, 5, and 50 nM) at different periods (pre-/post-training and pre-test), the effect of the drug was evaluated in a step-down IA paradigm. The latency of step-down (sec) was considered a criterion for memory performance.
Results: The pre-training injections of CyA (0.5, 5 nM), however not of 50 nM, impaired IA learning acquisition. The post-training injection of high-dose CyA (50 nM) impaired memory consolidation. The pre-test ICV CyA injection did not impair memory retrieval; the ICV injection of CyA caused no change in locomotion.
Conclusion: These findings suggest that CyA selectively interferes with acquisition, retention, but not retrieval, of information processing in mice. Given the crucial role of CN in common signaling pathway of memory performance and cognition, it could be a probable therapeutic target in the treatment of a wide variety of neurological conditions involving memory. [GMJ.2018;7:e1044]
References
Hunt J, Cheng A, Hoyles A, Jervis E, Morshead CM. Cyclosporin A has direct effects on adult neural precursor cells. J Neurosci. 2010;30(8):2888-96. https://doi.org/10.1523/JNEUROSCI.5991-09.2010PMid:20181586 Banafshe HR, Ghazi-Khansari M, Ejtemaei Mehr S, Dehpour AR. Cyclosporine attenuates the adenylyl cyclase superactivation induced by chronic cannabinoid treatment. Eur J Pharmacol. 2007;557(1):20-2. https://doi.org/10.1016/j.ejphar.2006.11.019PMid:17161837 Hadjiasgary A, Banafshe HR, Ardjmand A. Intra-CA1 administration of FK-506 (tacrolimus) in rat impairs learning and memory in an inhibitory avoidance paradigm. Iran J Basic Med Sci. 2015;18(2):130-7. PMid:25810886 PMCid:PMC4366723 Chow A, Morshead CM. Cyclosporin A enhances neurogenesis in the dentate gyrus of the hippocampus. Stem Cell Res. 2016;16(1):79-87. https://doi.org/10.1016/j.scr.2015.12.007PMid:26720914 Gerard M, Deleersnijder A, Demeulemeester J, Debyser Z, Baekelandt V. Unraveling the role of peptidyl-prolyl isomerases in neurodegeneration. Mol Neurobiol. 2011;44(1):13-27. https://doi.org/10.1007/s12035-011-8184-2PMid:21553017 Osman MM, Lulic D, Glover L, Stahl CE, Lau T, van Loveren H, et al. Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides. 2011;45(6):359-68. https://doi.org/10.1016/j.npep.2011.04.002PMid:21592568 Sachewsky N, Hunt J, Cooke MJ, Azimi A, Zarin T, Miu C, et al. Cyclosporin A enhances neural precursor cell survival in mice through a calcineurin-independent pathway. Dis Model Mech. 2014;7(8):953-61. https://doi.org/10.1242/dmm.014480PMid:25056698 PMCid:PMC4107324 Jung S, Yang H, Kim BS, Chu K, Lee SK, Jeon D. The immunosuppressant cyclosporin A inhibits recurrent seizures in an experimental model of temporal lobe epilepsy. Neurosci Lett. 2012;529(2):133-8. https://doi.org/10.1016/j.neulet.2012.08.087PMid:22981977 Hoffman A, Taleski G, Sontag E. The protein serine/threonine phosphatases PP2A, PP1 and calcineurin: A triple threat in the regulation of the neuronal cytoskeleton. Mol Cell Neurosci.2017;84:119-31. https://doi.org/10.1016/j.mcn.2017.01.005PMid:28126489 Taglialatela G, Hogan D, Zhang WR, Dineley KT. Intermediate-and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res. 2009;200(1):95-9. https://doi.org/10.1016/j.bbr.2008.12.034PMid:19162087 PMCid:PMC2663011 https://doi.org/10.1186/gb-2005-6-7-226PMid:15998457 PMCid:PMC1175980 Baumgärtel K, Mansuy IM. Neural functions of calcineurin in synaptic plasticity and memory. Learning Mem.2012;19(9):375-84. https://doi.org/10.1101/lm.027201.112PMid:22904368 Christie-Fougere MM, Darby-King A, Harley CW, McLean JH. Calcineurin inhibition eliminates the normal inverted U curve, enhances acquisition and prolongs memory in a mammalian 3'-5'-cyclic AMP-dependent learning paradigm. Neuroscience. 2009;158(4):1277-83. https://doi.org/10.1016/j.neuroscience.2008.11.004PMid:19041926 Bennett PC, Moutsoulas P, Lawen A, Perini E, Ng KT. Novel effects on memory observed following unilateral intracranial administration of okadaic acid, cyclosporin A, FK506 and [MeVal4]CyA. Brain Res. 2003;988(1-2):56-68. https://doi.org/10.1016/S0006-8993(03)03344-4 Shaw JA, Matlovich N, Rushlow W, Cain P, Rajakumar N. Role of calcineurin in inhibiting disadvantageous associations. Neuroscience. 2012;203:144-52. https://doi.org/10.1016/j.neuroscience.2011.12.010PMid:22230044 Bennett PC, Schmidt L, Lawen A, Moutsoulas P, Ng KT. Cyclosporin A, FK506 and rapamycin produce multiple, temporally distinct, effects on memory following single-trial, passive avoidance training in the chick. Brain Res. 2002;927(2):180-94. https://doi.org/10.1016/S0006-8993(01)03353-4 Ikegami S, Kato A, Kudo Y, Kuno T, Ozawa F, Inokuchi K. A facilitatory effect on the induction of long-term potentiation in vivo by chronic administration of antisense oligodeoxynucleotides against catalytic subunits of calcineurin. Brain Res Mol Brain Res. 1996;41(1-2):183-91. https://doi.org/10.1016/0169-328X(96)00094-0 Zhang Y, Xu Z, Wang H, Dong Y, Shi HN, Culley DJ, et al. Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol. 2012;71(5):687-98. https://doi.org/10.1002/ana.23536PMid:22368036 PMCid:PMC3942786 Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends neurosci.1992;15(8):303-8. https://doi.org/10.1016/0166-2236(92)90081-I Lu YF, Tomizawa K, Moriwaki A, Hayashi Y, Tokuda M, Itano T, et al. Calcineurin inhibitors, FK506 and cyclosporin A, suppress the NMDA receptor-mediated potentials and LTP, but not depotentiation in the rat hippocampus. Brain Res. 1996;729(1):142-6. https://doi.org/10.1016/0006-8993(96)00568-9 Franklin RBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates, 4th edition. Academic Press, San Diego, 2013. Hajhashemi V, Banafshe HR, Minaiyan M, Mesdaghinia A, Abed A. Antinociceptive effects of venlafaxine in a rat model of peripheral neuropathy: role of alpha2-adrenergic receptors. Eur. J. Pharmacol. 2014;738:230-6. https://doi.org/10.1016/j.ejphar.2014.04.046PMid:24861021 Hamidi GA, Jafari-Sabet M, Abed A, Mesdaghinia A, Mahlooji M, Banafshe HR. Gabapentin enhances anti-nociceptive effects of morphine on heat, cold, and mechanical hyperalgesia in a rat model of neuropathic pain. Iran J Basic Med Sci. 2014;17(10):753-9. PMid:25729543 PMCid:PMC4340982 Jafari-Sabet M, Banafshe HR, Khodadadnejad MA. Modulation of muscimol state-dependent memory by alpha2-adrenoceptors of the dorsal hippocampal area. Eur J Pharmacol.2013;710(1-3):92-9. https://doi.org/10.1016/j.ejphar.2013.03.046PMid:23603244 Mansuy IM. Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun.2003;311(4):1195-208. https://doi.org/10.1016/j.bbrc.2003.10.046PMid:14623305 Lu KP, Finn G, Lee TH, Nicholson LK. Prolyl cis-trans isomerization as a molecular timer. Nat Chem biol.2007;3(10):61 https://doi.org/10.1038/nchembio.2007.35PMid:17876319 Ng KT, Gibbs ME, Crowe SF, Sedman GL, Hua F, Zhao W, et al. Molecular mechanisms of memory formation. Mol Neurobiol.1991;5(2-4):333-50. https://doi.org/10.1007/BF02935556PMid:1688056 Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T, et al. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 2001;107(5):617-29. https://doi.org/10.1016/S0092-8674(01)00585-2 Yu DY, Luo J, Bu F, Zhang W, Wei Q. Effects of cyclosporin A, FK506 and rapamycin on calcineurin phosphatase activity in mouse brain. IUBMB life.2006;58(7):429-33. https://doi.org/10.1080/15216540600791555PMid:16801218 Jouvenceau A, Dutar P. A role for the protein phosphatase 2B in altered hippocampal synaptic plasticity in the aged rat. J Physiol Paris. 2006;99(2-3):154-61. https://doi.org/10.1016/j.jphysparis.2005.12.009PMid:16442785 Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. The MAPK cascade is required for mammalian associative learning. Nat Neurosci.1998;1(7):602-9. https://doi.org/10.1038/2836 Winder DG, Sweatt JD. Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature Rev Neurosci.2001;2(7):461-74. https://doi.org/10.1038/35081514PMid:11433371 Borlongan CV, Fujisaki T, Watanabe S. Chronic administration of cyclosporine A does not impair memory retention in rats. Neuroreport. 1997;8(3):673-6. https://doi.org/10.1097/00001756-199702100-00019PMid:9106745 Galat A, Metcalfe SM. Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol 1995;63(1):67-118. https://doi.org/10.1016/0079-6107(94)00009-X Nath PR, Isakov N. Insights into peptidyl-prolyl cis-trans isomerase structure and function in immunocytes. Immunol lett. 2015;163(1):120-31. https://doi.org/10.1016/j.imlet.2014.11.002PMid:25445495 https://doi.org/10.1016/0306-4522(94)90389-1 https://doi.org/10.1016/0006-2952(94)00423-J Fruman DA, Burakoff SJ, Bierer BE. Immunophilins in protein folding and immunosuppression. FASEB J. 1994;8(6):391-400. https://doi.org/10.1096/fasebj.8.6.7513288PMid:7513288 Davis HP, Squire LR. Protein synthesis and memory: a review. Psychol bull. 1984;96(3):518-59. https://doi.org/10.1037/0033-2909.96.3.518 Leung AW, Halestrap AP. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta.2008;1777(7-8):946-52. https://doi.org/10.1016/j.bbabio.2008.03.009PMid:18407825