Neurotoxicologically Outcomes of Perinatal Chlordiazepoxide Exposure on the Fetal Prefrontal Cortex Cells in Rat Pup

Chlordiazepoxide Effects on Fetal Prefrontal Cortex

Authors

  • Yekta Parsa Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
  • Zahra Nadia Sharifi Anatomical Sciences Department, Tehran Medical Sciences Branch, Islamic Azad University, Tehran Iran
  • Fariborz Ghaffarpasand Research Center for Neuromodulation and Pain, NAB Pain Clinic, Shiraz University of Medical Sciences, Shiraz, Iran
  • Tina Parsa Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
  • Mohammad-Reza Zarrindast Department of Pharmacology, Medical Genomics Research Center and School of Advanced Sciences in Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Ehsan Jangholi Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
  • Soheila Yadollah-Damavandi Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
  • Mohammad Hossein Aghazadeh Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
  • Farshad Shahi Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
  • Shabnam Movassaghi Anatomical Sciences Department, Tehran Medical Sciences Branch, Islamic Azad University, Tehran Iran

Keywords:

Chlordiazepoxide; Prefrontal Cortex; Perinatal Exposure; Neurotoxicity; Rat

Abstract

Background: Chlordiazepoxide is a benzodiazepine which is widely used as an anxiolytic, sedative and muscle-relaxant and its effects on neurodevelopment is yet to be identified. The aim of the current experimental study was to determine the effects of prenatal exposure to chlordiazepoxide on development of the prefrontal cortex (PFC). Materials and Methods: A total number of 9 pregnant Wister rats that were randomly assigned to three groups receiving standard rat food and drinking water ad libitum (n=3) or chlordiazepoxide (10 mg/kg) (n=3) and an equal volume of vehicle (0.9% NaCl) (n=3) intraperitoneal (i.p.) injection once daily from first to 21st day of gestation, respectively. At the end of the experiment, 14-day-old neonatal rat pups (n=8 per each group) were sacrificed and their PFC cells were extracted. Mitochondria were extracted from the PFC cells and their level of reactive oxygen species (ROS), protein density, Glutathione (GSH) content, mitochondrial membrane potential (MMP), swelling, cytochrome c release and ATP level was identified. We also performed the Nissl staining, DNA fragmentation assay and RNA extraction and real-time polymerase chain reaction (PCR) on PFC cells. Results: We found that isolated mitochondria from rat pups receiving chlordiazepoxide (E), had significantly higher ROS formation (P<0.001), decreased GSH (P<0.001), lower MMP (P<0.001), higher mitochondrial swelling (P<0.001), decreased ATP level (P<0.001), increased cytochrome c release (P<0.001) and higher Bax (P<0.001), p53 (P<0.001), cytochrome c (P<0.001) and caspase 8 mRNAs (P<0.001). The Nissle-stained neurons decreased while the apoptosis significantly increased (P<0.001). Conclusions: The results of this in vivo study provide evidence regarding negative effects of prenatal exposure to chlordiazepoxide on PFC.

References

Iqbal MM, Aneja A, Fremont WP. Effects of chlordiazepoxide (Librium) during pregnancy and lactation. Conn Med. 2003;67(5):259-62.

Dinarvand A, Hashemi M, Dinarvand R, Movassaghi S, Jafarinia M. The Effect of Chlordiazepoxide Consumption on the Hippocampus of Neonatal Rats During Pregnancy. Galen Medical Journal. 2022;11:e2283-e.

https://doi.org/10.31661/gmj.v11i.2283

PMid:36408487 PMCid:PMC9651174

Avnimelech-Gigus N, Feldon J, Tanne Z, Gavish M. The effects of prenatal chlordiazepoxide administration on avoidance behavior and benzodiazepine receptor density in adult albino rats. Eur J Pharmacol. 1986;129(1-2):185-8.

https://doi.org/10.1016/0014-2999(86)90352-3

PMid:3021475

Gavish M, Avnimelech-Gigus N, Feldon J, Myslobodsky M. Prenatal chlordiazepoxide effects on metrazol seizures and benzodiazepine receptors density in adult albino rats. Life Sci. 1985;36(18):1693-8.

https://doi.org/10.1016/0024-3205(85)90550-8

PMid:2984505

Mohammadkhani M, Gholami D, Riazi G. The effects of chronic morphine administration on spatial memory and microtubule dynamicity in male mice's brain. IBRO Neurosci Rep. 2024;16:300-8.

https://doi.org/10.1016/j.ibneur.2024.02.002

PMid:38390235 PMCid:PMC10881431

Armstrong C. ACOG guidelines on psychiatric medication use during pregnancy and lactation. American Family Physician. 2008 Sep 15;78(6):772-8.

Singsai K, Saksit N, Chaikhumwang P. Brain acetylcholinesterase activity and the protective effect of Gac fruit on scopolamine-induced memory impairment in adult zebrafish. IBRO Neurosci Rep. 2024;16:368-72.

https://doi.org/10.1016/j.ibneur.2024.02.004

PMid:38435743 PMCid:PMC10904921

Grigoriadis S, Alibrahim A, Mansfield JK, Sullovey A, Robinson GE. Hypnotic benzodiazepine receptor agonist exposure during pregnancy and the risk of congenital malformations and other adverse pregnancy outcomes: A systematic review and meta-analysis. Acta Psychiatr Scand. 2022;146(4):312-24.

https://doi.org/10.1111/acps.13441

PMid:35488412

Hartz SC, Heinonen OP, Shapiro S, Siskind V, Slone D. Antenatal exposure to meprobamate and chlordiazepoxide in relation to malformations, mental development, and childhood mortality. N Engl J Med. 1975;292(14):726-8.

https://doi.org/10.1056/NEJM197504032921405

PMid:1113782

Milkovich L, van den Berg BJ. Effects of prenatal meprobamate and chlordiazepoxide hydrochloride on human embryonic and fetal development. N Engl J Med. 1974;291(24):1268-71.

https://doi.org/10.1056/NEJM197412122912402

PMid:4431433

Bellantuono C, Tofani S, Di Sciascio G, Santone G. Benzodiazepine exposure in pregnancy and risk of major malformations: a critical overview. Gen Hosp Psychiatry. 2013;35(1):3-8.

https://doi.org/10.1016/j.genhosppsych.2012.09.003

PMid:23044244

Paxinos G, Watson C. The rat brain in stereotaxic coordinates 2nd ed. Academic: New York, NY, USA; 1986.

Ghazi-Khansari M, Mohammadi-Bardbori A, Hosseini MJ. Using Janus green B to study paraquat toxicity in rat liver mitochondria: role of ACE inhibitors (thiol and nonthiol ACEi). Ann N Y Acad Sci. 2006;1090:98-107.

https://doi.org/10.1196/annals.1378.010

PMid:17384251

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.

https://doi.org/10.1016/0003-2697(76)90527-3

PMid:942051

Fortunato F, Deng X, Gates LK, McClain CJ, Bimmler D, Graf R et al. Pancreatic response to endotoxin after chronic alcohol exposure: switch from apoptosis to necrosis? Am J Physiol Gastrointest Liver Physiol. 2006;290(2):G232-41.

https://doi.org/10.1152/ajpgi.00040.2005

PMid:15976389

Gao X, Zheng CY, Yang L, Tang XC, Zhang HY. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med. 2009;46(11):1454-62.

https://doi.org/10.1016/j.freeradbiomed.2009.02.028

PMid:19272446

Sadegh C, Schreck RP. The spectroscopic determination of aqueous sulfite using Ellman's reagent. MURJ. 2003;8:39-43.

Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics. 2013;5(2):152-66.

https://doi.org/10.1039/c2mt20198d

PMid:23306434

Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X et al. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem. 2010;104(4):371-8.

https://doi.org/10.1016/j.jinorgbio.2009.11.007

PMid:20015552

Tafreshi N, Hosseinkhani S, Sadeghizadeh M, Sadeghi M, Ranjbar B, Naderi-Manesh H. The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase. J Biol Chem. 2007;282(12):8641-7.

https://doi.org/10.1074/jbc.M609271200

PMid:17197704

Faghani M, Ejlali F, Sharifi ZN, Molladoost H, Movassaghi S. The Neuroprotective Effect of Atorvastatin on Apoptosis of Hippocampus Following Transient Global Ischemia/Reperfusion. Galen Medical Journal. 2016;5(2):82-9.

https://doi.org/10.31661/gmj.v5i2.656

Laviola G, de Acetis L, Bignami G, Alleva E. Prenatal oxazepam enhances mouse maternal aggression in the offspring, without modifying acute chlordiazepoxide effects. Neurotoxicol Teratol. 1991;13(1):75-81.

https://doi.org/10.1016/0892-0362(91)90030-Z

PMid:1646381

Chandrasekaran K, Stoll J, Giordano T, Atack JR, Matocha MF, Brady DR et al. Differential expression of cytochrome oxidase (COX) genes in different regions of monkey brain. J Neurosci Res. 1992;32(3):415-23.

https://doi.org/10.1002/jnr.490320313

PMid:1279190

Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol. 2010;69(2):155-67.

https://doi.org/10.1097/NEN.0b013e3181cb5af4

PMid:20084018 PMCid:PMC2826839

Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123-30.

https://doi.org/10.1017/S1461145710000805

PMid:20633320

Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life. 2001;52(3-5):159-64.

https://doi.org/10.1080/15216540152845957

PMid:11798028

Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67(4):360-8.

https://doi.org/10.1001/archgenpsychiatry.2010.22

PMid:20368511

Sakamuru S, Attene-Ramos MS, Xia M. Mitochondrial Membrane Potential Assay. High-Throughput Screening Assays in Toxicology. 2016:17-22.

https://doi.org/10.1007/978-1-4939-6346-1_2

PMid:27518619 PMCid:PMC5375165

Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407(6805):802-9.

https://doi.org/10.1038/35037739

PMid:11048732

Dong Y, Zhang W, Lai B, Luan WJ, Zhu YH, Zhao BQ et al. Two free radical pathways mediate chemical hypoxia-induced glutamate release in synaptosomes from the prefrontal cortex. Biochim Biophys Acta. 2012;1823(2):493-504.

https://doi.org/10.1016/j.bbamcr.2011.10.004

PMid:22057390

Jarskog LF, Gilmore JH, Glantz LA, Gable KL, German TT, Tong RI et al. Caspase-3 activation in rat frontal cortex following treatment with typical and atypical antipsychotics. Neuropsychopharmacology. 2007;32(1):95-102.

https://doi.org/10.1038/sj.npp.1301074

PMid:16641945

Hara Y, Yuk F, Puri R, Janssen WG, Rapp PR, Morrison JH. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc Natl Acad Sci U S A. 2014;111(1):486-91.

https://doi.org/10.1073/pnas.1311310110

PMid:24297907 PMCid:PMC3890848

Kar AN, Sun CY, Reichard K, Gervasi NM, Pickel J, Nakazawa K et al. Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol. 2014;74(3):333-50.

https://doi.org/10.1002/dneu.22141

PMid:24151253 PMCid:PMC4133933

Reichel JM, Nissel S, Rogel-Salazar G, Mederer A, Kafer K, Bedenk BT et al. Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus. Front Behav Neurosci. 2014;8:452.

https://doi.org/10.3389/fnbeh.2014.00452

PMid:25628548 PMCid:PMC4292780

Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex. 2012;48(1):46-57.

https://doi.org/10.1016/j.cortex.2011.07.002

PMid:21872854

Yoon JH, Grandelis A, Maddock RJ. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity. J Neurosci. 2016;36(46):11788-94.

https://doi.org/10.1523/JNEUROSCI.1970-16.2016

PMid:27852785 PMCid:PMC5125231

Perlman SB, Almeida JR, Kronhaus DM, Versace A, Labarbara EJ, Klein CR et al. Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder. Bipolar Disord. 2012;14(2):162-74.

https://doi.org/10.1111/j.1399-5618.2012.00999.x

PMid:22420592 PMCid:PMC3703524

Swartz JR, Carrasco M, Wiggins JL, Thomason ME, Monk CS. Age-related changes in the structure and function of prefrontal cortex-amygdala circuitry in children and adolescents: a multi-modal imaging approach. Neuroimage. 2014;86:212-20.

https://doi.org/10.1016/j.neuroimage.2013.08.018

PMid:23959199 PMCid:PMC3947283

Downloads

Published

2025-07-02

How to Cite

Parsa, Y., Nadia Sharifi, Z., Ghaffarpasand, F., Parsa, T., Zarrindast, M.-R., Jangholi, E., … Movassaghi, S. (2025). Neurotoxicologically Outcomes of Perinatal Chlordiazepoxide Exposure on the Fetal Prefrontal Cortex Cells in Rat Pup: Chlordiazepoxide Effects on Fetal Prefrontal Cortex . Galen Medical Journal, 14, e3649. Retrieved from https://journals.salviapub.com/index.php/gmj/article/view/3649

Issue

Section

Original Article